Metamath Proof Explorer


Theorem frege96

Description: Every result of an application of the procedure R to an object that follows X in the R -sequence follows X in the R -sequence. Proposition 96 of Frege1879 p. 71. (Contributed by RP, 2-Jul-2020) (Revised by RP, 7-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege95.x XU
frege95.y YV
frege95.z ZW
frege95.r RA
Assertion frege96 Xt+RYYRZXt+RZ

Proof

Step Hyp Ref Expression
1 frege95.x XU
2 frege95.y YV
3 frege95.z ZW
4 frege95.r RA
5 1 2 3 4 frege95 YRZXt+RYXt+RZ
6 ax-frege8 YRZXt+RYXt+RZXt+RYYRZXt+RZ
7 5 6 ax-mp Xt+RYYRZXt+RZ