Metamath Proof Explorer


Theorem frgr2wwlkn0

Description: In a friendship graph, there is always a path/walk of length 2 between two different vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018) (Revised by AV, 12-May-2021)

Ref Expression
Hypothesis frgr2wwlkeu.v V=VtxG
Assertion frgr2wwlkn0 GFriendGraphAVBVABA2WWalksNOnGB

Proof

Step Hyp Ref Expression
1 frgr2wwlkeu.v V=VtxG
2 1 frgr2wwlkeu GFriendGraphAVBVAB∃!cV⟨“AcB”⟩A2WWalksNOnGB
3 reurex ∃!cV⟨“AcB”⟩A2WWalksNOnGBcV⟨“AcB”⟩A2WWalksNOnGB
4 ne0i ⟨“AcB”⟩A2WWalksNOnGBA2WWalksNOnGB
5 4 rexlimivw cV⟨“AcB”⟩A2WWalksNOnGBA2WWalksNOnGB
6 2 3 5 3syl GFriendGraphAVBVABA2WWalksNOnGB