Metamath Proof Explorer


Theorem frgrregorufr

Description: If there is a vertex having degree K for each (nonnegative integer) K in a friendship graph, then either all vertices have degree K or there is a universal friend. This corresponds to claim 2 in Huneke p. 2: "Suppose there is a vertex of degree k > 1. ... all vertices have degree k, unless there is a universal friend. ... It follows that G is k-regular, i.e., the degree of every vertex is k". (Contributed by Alexander van der Vekens, 1-Jan-2018)

Ref Expression
Hypotheses frgrregorufr0.v V=VtxG
frgrregorufr0.e E=EdgG
frgrregorufr0.d D=VtxDegG
Assertion frgrregorufr GFriendGraphaVDa=KvVDv=KvVwVvvwE

Proof

Step Hyp Ref Expression
1 frgrregorufr0.v V=VtxG
2 frgrregorufr0.e E=EdgG
3 frgrregorufr0.d D=VtxDegG
4 1 2 3 frgrregorufr0 GFriendGraphvVDv=KvVDvKvVwVvvwE
5 orc vVDv=KvVDv=KvVwVvvwE
6 5 a1d vVDv=KaVDa=KvVDv=KvVwVvvwE
7 fveq2 v=aDv=Da
8 7 neeq1d v=aDvKDaK
9 8 rspcva aVvVDvKDaK
10 df-ne DaK¬Da=K
11 pm2.21 ¬Da=KDa=KvVDv=KvVwVvvwE
12 10 11 sylbi DaKDa=KvVDv=KvVwVvvwE
13 9 12 syl aVvVDvKDa=KvVDv=KvVwVvvwE
14 13 ancoms vVDvKaVDa=KvVDv=KvVwVvvwE
15 14 rexlimdva vVDvKaVDa=KvVDv=KvVwVvvwE
16 olc vVwVvvwEvVDv=KvVwVvvwE
17 16 a1d vVwVvvwEaVDa=KvVDv=KvVwVvvwE
18 6 15 17 3jaoi vVDv=KvVDvKvVwVvvwEaVDa=KvVDv=KvVwVvvwE
19 4 18 syl GFriendGraphaVDa=KvVDv=KvVwVvvwE