Description: In a friendship graph there are either no vertices having degree K , or all vertices have degree K for any (nonnegative integer) K , unless there is a universal friend. This corresponds to claim 2 in Huneke p. 2: "... all vertices have degree k, unless there is a universal friend." (Contributed by Alexander van der Vekens, 1-Jan-2018) (Revised by AV, 11-May-2021) (Proof shortened by AV, 3-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frgrregorufr0.v | |
|
frgrregorufr0.e | |
||
frgrregorufr0.d | |
||
Assertion | frgrregorufr0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrregorufr0.v | |
|
2 | frgrregorufr0.e | |
|
3 | frgrregorufr0.d | |
|
4 | fveqeq2 | |
|
5 | 4 | cbvrabv | |
6 | eqid | |
|
7 | 1 3 5 6 | frgrwopreg | |
8 | 1 3 5 6 2 | frgrwopreg1 | |
9 | 8 | 3mix3d | |
10 | 9 | expcom | |
11 | fveqeq2 | |
|
12 | 11 | cbvrabv | |
13 | 12 | eqeq1i | |
14 | rabeq0 | |
|
15 | 13 14 | bitri | |
16 | neqne | |
|
17 | 16 | ralimi | |
18 | 17 | 3mix2d | |
19 | 18 | a1d | |
20 | 15 19 | sylbi | |
21 | 10 20 | jaoi | |
22 | 1 3 5 6 2 | frgrwopreg2 | |
23 | 22 | 3mix3d | |
24 | 23 | expcom | |
25 | difrab0eq | |
|
26 | 12 | eqeq2i | |
27 | rabid2 | |
|
28 | 26 27 | bitri | |
29 | 3mix1 | |
|
30 | 29 | a1d | |
31 | 28 30 | sylbi | |
32 | 25 31 | sylbi | |
33 | 24 32 | jaoi | |
34 | 21 33 | jaoi | |
35 | 7 34 | mpcom | |