Metamath Proof Explorer


Theorem frgrwopreg1

Description: According to statement 5 in Huneke p. 2: "If A ... is a singleton, then that singleton is a universal friend". (Contributed by Alexander van der Vekens, 1-Jan-2018) (Proof shortened by AV, 4-Feb-2022)

Ref Expression
Hypotheses frgrwopreg.v V = Vtx G
frgrwopreg.d D = VtxDeg G
frgrwopreg.a A = x V | D x = K
frgrwopreg.b B = V A
frgrwopreg.e E = Edg G
Assertion frgrwopreg1 G FriendGraph A = 1 v V w V v v w E

Proof

Step Hyp Ref Expression
1 frgrwopreg.v V = Vtx G
2 frgrwopreg.d D = VtxDeg G
3 frgrwopreg.a A = x V | D x = K
4 frgrwopreg.b B = V A
5 frgrwopreg.e E = Edg G
6 1 fvexi V V
7 3 6 rabex2 A V
8 hash1snb A V A = 1 v A = v
9 7 8 ax-mp A = 1 v A = v
10 exsnrex v A = v v A A = v
11 3 ssrab3 A V
12 ssrexv A V v A A = v v V A = v
13 11 12 ax-mp v A A = v v V A = v
14 1 2 3 4 5 frgrwopregasn G FriendGraph v V A = v w V v v w E
15 14 3expia G FriendGraph v V A = v w V v v w E
16 15 reximdva G FriendGraph v V A = v v V w V v v w E
17 13 16 syl5com v A A = v G FriendGraph v V w V v v w E
18 10 17 sylbi v A = v G FriendGraph v V w V v v w E
19 18 com12 G FriendGraph v A = v v V w V v v w E
20 9 19 syl5bi G FriendGraph A = 1 v V w V v v w E
21 20 imp G FriendGraph A = 1 v V w V v v w E