Metamath Proof Explorer


Theorem frgrwopreglem3

Description: Lemma 3 for frgrwopreg . The vertices in the sets A and B have different degrees. (Contributed by Alexander van der Vekens, 30-Dec-2017) (Revised by AV, 10-May-2021) (Proof shortened by AV, 2-Jan-2022)

Ref Expression
Hypotheses frgrwopreg.v V=VtxG
frgrwopreg.d D=VtxDegG
frgrwopreg.a A=xV|Dx=K
frgrwopreg.b B=VA
Assertion frgrwopreglem3 XAYBDXDY

Proof

Step Hyp Ref Expression
1 frgrwopreg.v V=VtxG
2 frgrwopreg.d D=VtxDegG
3 frgrwopreg.a A=xV|Dx=K
4 frgrwopreg.b B=VA
5 fveqeq2 x=YDx=KDY=K
6 5 notbid x=Y¬Dx=K¬DY=K
7 3 difeq2i VA=VxV|Dx=K
8 notrab VxV|Dx=K=xV|¬Dx=K
9 4 7 8 3eqtri B=xV|¬Dx=K
10 6 9 elrab2 YBYV¬DY=K
11 fveqeq2 x=XDx=KDX=K
12 11 3 elrab2 XAXVDX=K
13 eqeq2 DX=KDY=DXDY=K
14 13 notbid DX=K¬DY=DX¬DY=K
15 neqne ¬DY=DXDYDX
16 15 necomd ¬DY=DXDXDY
17 14 16 syl6bir DX=K¬DY=KDXDY
18 12 17 simplbiim XA¬DY=KDXDY
19 18 com12 ¬DY=KXADXDY
20 10 19 simplbiim YBXADXDY
21 20 impcom XAYBDXDY