Metamath Proof Explorer


Theorem fri

Description: A nonempty subset of an R -well-founded class has an R -minimal element (inference form). (Contributed by BJ, 16-Nov-2024) (Proof shortened by BJ, 19-Nov-2024)

Ref Expression
Assertion fri BCRFrABABxByB¬yRx

Proof

Step Hyp Ref Expression
1 simplr BCRFrABABRFrA
2 simprl BCRFrABABBA
3 simpll BCRFrABABBC
4 simprr BCRFrABABB
5 1 2 3 4 frd BCRFrABABxByB¬yRx