Metamath Proof Explorer


Theorem frins

Description: Well-Founded Induction Schema. If a property passes from all elements less than y of a well-founded class A to y itself (induction hypothesis), then the property holds for all elements of A . (Contributed by Scott Fenton, 6-Feb-2011) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypotheses frins.1 RFrA
frins.2 RSeA
frins.3 yAzPredRAy[˙z/y]˙φφ
Assertion frins yAφ

Proof

Step Hyp Ref Expression
1 frins.1 RFrA
2 frins.2 RSeA
3 frins.3 yAzPredRAy[˙z/y]˙φφ
4 3 frinsg RFrARSeAyAφ
5 1 2 4 mp2an yAφ
6 5 rspec yAφ