Metamath Proof Explorer


Theorem frins2

Description: Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 8-Feb-2011) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypotheses frins2.1 yAzPredRAyψφ
frins2.3 y=zφψ
Assertion frins2 RFrARSeAyAφ

Proof

Step Hyp Ref Expression
1 frins2.1 yAzPredRAyψφ
2 frins2.3 y=zφψ
3 nfv yψ
4 1 3 2 frins2f RFrARSeAyAφ