Metamath Proof Explorer


Theorem frlmbasmap

Description: Elements of the free module are set functions. (Contributed by Stefan O'Rear, 3-Feb-2015) (Proof shortened by AV, 21-Jul-2019)

Ref Expression
Hypotheses frlmval.f F=RfreeLModI
frlmbasmap.n N=BaseR
frlmbasmap.b B=BaseF
Assertion frlmbasmap IWXBXNI

Proof

Step Hyp Ref Expression
1 frlmval.f F=RfreeLModI
2 frlmbasmap.n N=BaseR
3 frlmbasmap.b B=BaseF
4 simpr IWXBXB
5 1 3 frlmrcl XBRV
6 simpl IWXBIW
7 eqid 0R=0R
8 1 2 7 3 frlmelbas RVIWXBXNIfinSupp0RX
9 5 6 8 syl2an2 IWXBXBXNIfinSupp0RX
10 4 9 mpbid IWXBXNIfinSupp0RX
11 10 simpld IWXBXNI