Metamath Proof Explorer


Theorem frmd0

Description: The identity of the free monoid is the empty word. (Contributed by Mario Carneiro, 27-Sep-2015)

Ref Expression
Hypothesis frmdmnd.m M=freeMndI
Assertion frmd0 =0M

Proof

Step Hyp Ref Expression
1 frmdmnd.m M=freeMndI
2 eqid BaseM=BaseM
3 eqid 0M=0M
4 eqid +M=+M
5 wrd0 WordI
6 1 2 frmdbas IVBaseM=WordI
7 5 6 eleqtrrid IVBaseM
8 1 2 4 frmdadd BaseMxBaseM+Mx=++x
9 7 8 sylan IVxBaseM+Mx=++x
10 1 2 frmdelbas xBaseMxWordI
11 10 adantl IVxBaseMxWordI
12 ccatlid xWordI++x=x
13 11 12 syl IVxBaseM++x=x
14 9 13 eqtrd IVxBaseM+Mx=x
15 1 2 4 frmdadd xBaseMBaseMx+M=x++
16 15 ancoms BaseMxBaseMx+M=x++
17 7 16 sylan IVxBaseMx+M=x++
18 ccatrid xWordIx++=x
19 11 18 syl IVxBaseMx++=x
20 17 19 eqtrd IVxBaseMx+M=x
21 2 3 4 7 14 20 ismgmid2 IV=0M
22 0g0 =0
23 fvprc ¬IVfreeMndI=
24 1 23 eqtrid ¬IVM=
25 24 fveq2d ¬IV0M=0
26 22 25 eqtr4id ¬IV=0M
27 21 26 pm2.61i =0M