Metamath Proof Explorer


Theorem frmdval

Description: Value of the free monoid construction. (Contributed by Mario Carneiro, 27-Sep-2015)

Ref Expression
Hypotheses frmdval.m M=freeMndI
frmdval.b IVB=WordI
frmdval.p +˙=++B×B
Assertion frmdval IVM=BasendxB+ndx+˙

Proof

Step Hyp Ref Expression
1 frmdval.m M=freeMndI
2 frmdval.b IVB=WordI
3 frmdval.p +˙=++B×B
4 df-frmd freeMnd=iVBasendxWordi+ndx++Wordi×Wordi
5 wrdeq i=IWordi=WordI
6 2 eqcomd IVWordI=B
7 5 6 sylan9eqr IVi=IWordi=B
8 7 opeq2d IVi=IBasendxWordi=BasendxB
9 7 sqxpeqd IVi=IWordi×Wordi=B×B
10 9 reseq2d IVi=I++Wordi×Wordi=++B×B
11 10 3 eqtr4di IVi=I++Wordi×Wordi=+˙
12 11 opeq2d IVi=I+ndx++Wordi×Wordi=+ndx+˙
13 8 12 preq12d IVi=IBasendxWordi+ndx++Wordi×Wordi=BasendxB+ndx+˙
14 elex IVIV
15 prex BasendxB+ndx+˙V
16 15 a1i IVBasendxB+ndx+˙V
17 4 13 14 16 fvmptd2 IVfreeMndI=BasendxB+ndx+˙
18 1 17 eqtrid IVM=BasendxB+ndx+˙