Metamath Proof Explorer


Theorem frrlem2

Description: Lemma for well-founded recursion. An acceptable function is a function. (Contributed by Paul Chapman, 21-Apr-2012)

Ref Expression
Hypothesis frrlem1.1 B=f|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
Assertion frrlem2 gBFung

Proof

Step Hyp Ref Expression
1 frrlem1.1 B=f|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
2 1 frrlem1 B=g|zgFnzzAwzPredRAwzwzgw=wGgPredRAw
3 2 eqabri gBzgFnzzAwzPredRAwzwzgw=wGgPredRAw
4 fnfun gFnzFung
5 4 3ad2ant1 gFnzzAwzPredRAwzwzgw=wGgPredRAwFung
6 5 exlimiv zgFnzzAwzPredRAwzwzgw=wGgPredRAwFung
7 3 6 sylbi gBFung