Metamath Proof Explorer


Theorem frrlem5

Description: Lemma for well-founded recursion. State the well-founded recursion generator in terms of the acceptable functions. (Contributed by Scott Fenton, 27-Aug-2022)

Ref Expression
Hypotheses frrlem5.1 B = f | x f Fn x x A y x Pred R A y x y x f y = y G f Pred R A y
frrlem5.2 F = frecs R A G
Assertion frrlem5 F = B

Proof

Step Hyp Ref Expression
1 frrlem5.1 B = f | x f Fn x x A y x Pred R A y x y x f y = y G f Pred R A y
2 frrlem5.2 F = frecs R A G
3 df-frecs frecs R A G = f | x f Fn x x A y x Pred R A y x y x f y = y G f Pred R A y
4 1 unieqi B = f | x f Fn x x A y x Pred R A y x y x f y = y G f Pred R A y
5 3 2 4 3eqtr4i F = B