Metamath Proof Explorer


Theorem frrlem5

Description: Lemma for well-founded recursion. State the well-founded recursion generator in terms of the acceptable functions. (Contributed by Scott Fenton, 27-Aug-2022)

Ref Expression
Hypotheses frrlem5.1 B=f|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
frrlem5.2 F=frecsRAG
Assertion frrlem5 F=B

Proof

Step Hyp Ref Expression
1 frrlem5.1 B=f|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
2 frrlem5.2 F=frecsRAG
3 df-frecs frecsRAG=f|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
4 1 unieqi B=f|xfFnxxAyxPredRAyxyxfy=yGfPredRAy
5 3 2 4 3eqtr4i F=B