Metamath Proof Explorer


Theorem fsovcnvd

Description: The value of the converse ( A O B ) is ( B O A ) , where O is the operator which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, gives a family of functions that include their own inverse. (Contributed by RP, 27-Apr-2021)

Ref Expression
Hypotheses fsovd.fs O=aV,bVf𝒫baybxa|yfx
fsovd.a φAV
fsovd.b φBW
fsovfvd.g G=AOB
fsovcnvlem.h H=BOA
Assertion fsovcnvd φG-1=H

Proof

Step Hyp Ref Expression
1 fsovd.fs O=aV,bVf𝒫baybxa|yfx
2 fsovd.a φAV
3 fsovd.b φBW
4 fsovfvd.g G=AOB
5 fsovcnvlem.h H=BOA
6 1 2 3 4 fsovfd φG:𝒫BA𝒫AB
7 1 3 2 5 fsovfd φH:𝒫AB𝒫BA
8 1 2 3 4 5 fsovcnvlem φHG=I𝒫BA
9 1 3 2 5 4 fsovcnvlem φGH=I𝒫AB
10 6 7 8 9 2fcoidinvd φG-1=H