Metamath Proof Explorer


Theorem fsovd

Description: Value of the operator, ( A O B ) , which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, A and B . (Contributed by RP, 25-Apr-2021)

Ref Expression
Hypotheses fsovd.fs O = a V , b V f 𝒫 b a y b x a | y f x
fsovd.a φ A V
fsovd.b φ B W
Assertion fsovd φ A O B = f 𝒫 B A y B x A | y f x

Proof

Step Hyp Ref Expression
1 fsovd.fs O = a V , b V f 𝒫 b a y b x a | y f x
2 fsovd.a φ A V
3 fsovd.b φ B W
4 1 a1i φ O = a V , b V f 𝒫 b a y b x a | y f x
5 pweq b = B 𝒫 b = 𝒫 B
6 5 adantl a = A b = B 𝒫 b = 𝒫 B
7 simpl a = A b = B a = A
8 6 7 oveq12d a = A b = B 𝒫 b a = 𝒫 B A
9 simpr a = A b = B b = B
10 rabeq a = A x a | y f x = x A | y f x
11 10 adantr a = A b = B x a | y f x = x A | y f x
12 9 11 mpteq12dv a = A b = B y b x a | y f x = y B x A | y f x
13 8 12 mpteq12dv a = A b = B f 𝒫 b a y b x a | y f x = f 𝒫 B A y B x A | y f x
14 13 adantl φ a = A b = B f 𝒫 b a y b x a | y f x = f 𝒫 B A y B x A | y f x
15 2 elexd φ A V
16 3 elexd φ B V
17 ovex 𝒫 B A V
18 17 mptex f 𝒫 B A y B x A | y f x V
19 18 a1i φ f 𝒫 B A y B x A | y f x V
20 4 14 15 16 19 ovmpod φ A O B = f 𝒫 B A y B x A | y f x