Metamath Proof Explorer


Theorem fsovd

Description: Value of the operator, ( A O B ) , which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, A and B . (Contributed by RP, 25-Apr-2021)

Ref Expression
Hypotheses fsovd.fs O=aV,bVf𝒫baybxa|yfx
fsovd.a φAV
fsovd.b φBW
Assertion fsovd φAOB=f𝒫BAyBxA|yfx

Proof

Step Hyp Ref Expression
1 fsovd.fs O=aV,bVf𝒫baybxa|yfx
2 fsovd.a φAV
3 fsovd.b φBW
4 1 a1i φO=aV,bVf𝒫baybxa|yfx
5 pweq b=B𝒫b=𝒫B
6 5 adantl a=Ab=B𝒫b=𝒫B
7 simpl a=Ab=Ba=A
8 6 7 oveq12d a=Ab=B𝒫ba=𝒫BA
9 simpr a=Ab=Bb=B
10 rabeq a=Axa|yfx=xA|yfx
11 10 adantr a=Ab=Bxa|yfx=xA|yfx
12 9 11 mpteq12dv a=Ab=Bybxa|yfx=yBxA|yfx
13 8 12 mpteq12dv a=Ab=Bf𝒫baybxa|yfx=f𝒫BAyBxA|yfx
14 13 adantl φa=Ab=Bf𝒫baybxa|yfx=f𝒫BAyBxA|yfx
15 2 elexd φAV
16 3 elexd φBV
17 ovex 𝒫BAV
18 17 mptex f𝒫BAyBxA|yfxV
19 18 a1i φf𝒫BAyBxA|yfxV
20 4 14 15 16 19 ovmpod φAOB=f𝒫BAyBxA|yfx