Metamath Proof Explorer


Theorem fsumnn0cl

Description: Closure of a finite sum of nonnegative integers. (Contributed by Mario Carneiro, 23-Apr-2015)

Ref Expression
Hypotheses fsumcl.1 φAFin
fsumnn0cl.2 φkAB0
Assertion fsumnn0cl φkAB0

Proof

Step Hyp Ref Expression
1 fsumcl.1 φAFin
2 fsumnn0cl.2 φkAB0
3 nn0sscn 0
4 3 a1i φ0
5 nn0addcl x0y0x+y0
6 5 adantl φx0y0x+y0
7 0nn0 00
8 7 a1i φ00
9 4 6 1 2 8 fsumcllem φkAB0