Metamath Proof Explorer


Theorem fsump1

Description: The addition of the next term in a finite sum of A ( k ) is the current term plus B i.e. A ( N + 1 ) . (Contributed by NM, 4-Nov-2005) (Revised by Mario Carneiro, 21-Apr-2014) (Proof shortened by SN, 22-Mar-2025)

Ref Expression
Hypotheses fsump1.1 φNM
fsump1.2 φkMN+1A
fsump1.3 k=N+1A=B
Assertion fsump1 φk=MN+1A=k=MNA+B

Proof

Step Hyp Ref Expression
1 fsump1.1 φNM
2 fsump1.2 φkMN+1A
3 fsump1.3 k=N+1A=B
4 peano2uz NMN+1M
5 1 4 syl φN+1M
6 5 2 3 fsumm1 φk=MN+1A=k=MN+1-1A+B
7 eluzelz NMN
8 1 7 syl φN
9 8 zcnd φN
10 1cnd φ1
11 9 10 pncand φN+1-1=N
12 11 oveq2d φMN+1-1=MN
13 12 sumeq1d φk=MN+1-1A=k=MNA
14 13 oveq1d φk=MN+1-1A+B=k=MNA+B
15 6 14 eqtrd φk=MN+1A=k=MNA+B