Metamath Proof Explorer


Theorem fthf1

Description: The morphism map of a faithful functor is an injection. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses isfth.b B=BaseC
isfth.h H=HomC
isfth.j J=HomD
fthf1.f φFCFaithDG
fthf1.x φXB
fthf1.y φYB
Assertion fthf1 φXGY:XHY1-1FXJFY

Proof

Step Hyp Ref Expression
1 isfth.b B=BaseC
2 isfth.h H=HomC
3 isfth.j J=HomD
4 fthf1.f φFCFaithDG
5 fthf1.x φXB
6 fthf1.y φYB
7 1 2 3 isfth2 FCFaithDGFCFuncDGxByBxGy:xHy1-1FxJFy
8 7 simprbi FCFaithDGxByBxGy:xHy1-1FxJFy
9 4 8 syl φxByBxGy:xHy1-1FxJFy
10 6 adantr φx=XYB
11 simplr φx=Xy=Yx=X
12 simpr φx=Xy=Yy=Y
13 11 12 oveq12d φx=Xy=YxGy=XGY
14 11 12 oveq12d φx=Xy=YxHy=XHY
15 11 fveq2d φx=Xy=YFx=FX
16 12 fveq2d φx=Xy=YFy=FY
17 15 16 oveq12d φx=Xy=YFxJFy=FXJFY
18 13 14 17 f1eq123d φx=Xy=YxGy:xHy1-1FxJFyXGY:XHY1-1FXJFY
19 10 18 rspcdv φx=XyBxGy:xHy1-1FxJFyXGY:XHY1-1FXJFY
20 5 19 rspcimdv φxByBxGy:xHy1-1FxJFyXGY:XHY1-1FXJFY
21 9 20 mpd φXGY:XHY1-1FXJFY