Metamath Proof Explorer


Theorem ftp

Description: A function with a domain of three elements. (Contributed by Stefan O'Rear, 17-Oct-2014) (Proof shortened by Alexander van der Vekens, 23-Jan-2018)

Ref Expression
Hypotheses ftp.a AV
ftp.b BV
ftp.c CV
ftp.d XV
ftp.e YV
ftp.f ZV
ftp.g AB
ftp.h AC
ftp.i BC
Assertion ftp AXBYCZ:ABCXYZ

Proof

Step Hyp Ref Expression
1 ftp.a AV
2 ftp.b BV
3 ftp.c CV
4 ftp.d XV
5 ftp.e YV
6 ftp.f ZV
7 ftp.g AB
8 ftp.h AC
9 ftp.i BC
10 1 2 3 3pm3.2i AVBVCV
11 4 5 6 3pm3.2i XVYVZV
12 7 8 9 3pm3.2i ABACBC
13 ftpg AVBVCVXVYVZVABACBCAXBYCZ:ABCXYZ
14 10 11 12 13 mp3an AXBYCZ:ABCXYZ