Metamath Proof Explorer


Theorem fuccat

Description: The functor category is a category. Remark 6.16 in Adamek p. 88. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses fuccat.q Q=CFuncCatD
fuccat.r φCCat
fuccat.s φDCat
Assertion fuccat φQCat

Proof

Step Hyp Ref Expression
1 fuccat.q Q=CFuncCatD
2 fuccat.r φCCat
3 fuccat.s φDCat
4 eqid IdD=IdD
5 1 2 3 4 fuccatid φQCatIdQ=fCFuncDIdD1stf
6 5 simpld φQCat