Metamath Proof Explorer


Theorem fuccofval

Description: Value of the functor category. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses fucval.q Q = C FuncCat D
fucval.b B = C Func D
fucval.n N = C Nat D
fucval.a A = Base C
fucval.o · ˙ = comp D
fucval.c φ C Cat
fucval.d φ D Cat
fuccofval.x ˙ = comp Q
Assertion fuccofval φ ˙ = v B × B , h B 1 st v / f 2 nd v / g b g N h , a f N g x A b x 1 st f x 1 st g x · ˙ 1 st h x a x

Proof

Step Hyp Ref Expression
1 fucval.q Q = C FuncCat D
2 fucval.b B = C Func D
3 fucval.n N = C Nat D
4 fucval.a A = Base C
5 fucval.o · ˙ = comp D
6 fucval.c φ C Cat
7 fucval.d φ D Cat
8 fuccofval.x ˙ = comp Q
9 eqidd φ v B × B , h B 1 st v / f 2 nd v / g b g N h , a f N g x A b x 1 st f x 1 st g x · ˙ 1 st h x a x = v B × B , h B 1 st v / f 2 nd v / g b g N h , a f N g x A b x 1 st f x 1 st g x · ˙ 1 st h x a x
10 1 2 3 4 5 6 7 9 fucval φ Q = Base ndx B Hom ndx N comp ndx v B × B , h B 1 st v / f 2 nd v / g b g N h , a f N g x A b x 1 st f x 1 st g x · ˙ 1 st h x a x
11 10 fveq2d φ comp Q = comp Base ndx B Hom ndx N comp ndx v B × B , h B 1 st v / f 2 nd v / g b g N h , a f N g x A b x 1 st f x 1 st g x · ˙ 1 st h x a x
12 2 ovexi B V
13 12 12 xpex B × B V
14 13 12 mpoex v B × B , h B 1 st v / f 2 nd v / g b g N h , a f N g x A b x 1 st f x 1 st g x · ˙ 1 st h x a x V
15 catstr Base ndx B Hom ndx N comp ndx v B × B , h B 1 st v / f 2 nd v / g b g N h , a f N g x A b x 1 st f x 1 st g x · ˙ 1 st h x a x Struct 1 15
16 ccoid comp = Slot comp ndx
17 snsstp3 comp ndx v B × B , h B 1 st v / f 2 nd v / g b g N h , a f N g x A b x 1 st f x 1 st g x · ˙ 1 st h x a x Base ndx B Hom ndx N comp ndx v B × B , h B 1 st v / f 2 nd v / g b g N h , a f N g x A b x 1 st f x 1 st g x · ˙ 1 st h x a x
18 15 16 17 strfv v B × B , h B 1 st v / f 2 nd v / g b g N h , a f N g x A b x 1 st f x 1 st g x · ˙ 1 st h x a x V v B × B , h B 1 st v / f 2 nd v / g b g N h , a f N g x A b x 1 st f x 1 st g x · ˙ 1 st h x a x = comp Base ndx B Hom ndx N comp ndx v B × B , h B 1 st v / f 2 nd v / g b g N h , a f N g x A b x 1 st f x 1 st g x · ˙ 1 st h x a x
19 14 18 ax-mp v B × B , h B 1 st v / f 2 nd v / g b g N h , a f N g x A b x 1 st f x 1 st g x · ˙ 1 st h x a x = comp Base ndx B Hom ndx N comp ndx v B × B , h B 1 st v / f 2 nd v / g b g N h , a f N g x A b x 1 st f x 1 st g x · ˙ 1 st h x a x
20 11 8 19 3eqtr4g φ ˙ = v B × B , h B 1 st v / f 2 nd v / g b g N h , a f N g x A b x 1 st f x 1 st g x · ˙ 1 st h x a x