Metamath Proof Explorer


Theorem fuco2eld2

Description: Equivalence of product functor. (Contributed by Zhi Wang, 29-Sep-2025)

Ref Expression
Hypotheses fuco2eld.w φ W = S × R
fuco2eld2.u φ U W
fuco2eld2.s Rel S
fuco2eld2.r Rel R
Assertion fuco2eld2 φ U = 1 st 1 st U 2 nd 1 st U 1 st 2 nd U 2 nd 2 nd U

Proof

Step Hyp Ref Expression
1 fuco2eld.w φ W = S × R
2 fuco2eld2.u φ U W
3 fuco2eld2.s Rel S
4 fuco2eld2.r Rel R
5 2 1 eleqtrd φ U S × R
6 1st2nd2 U S × R U = 1 st U 2 nd U
7 5 6 syl φ U = 1 st U 2 nd U
8 df-rel Rel S S V × V
9 3 8 mpbi S V × V
10 xp1st U S × R 1 st U S
11 9 10 sselid U S × R 1 st U V × V
12 1st2nd2 1 st U V × V 1 st U = 1 st 1 st U 2 nd 1 st U
13 5 11 12 3syl φ 1 st U = 1 st 1 st U 2 nd 1 st U
14 df-rel Rel R R V × V
15 4 14 mpbi R V × V
16 xp2nd U S × R 2 nd U R
17 15 16 sselid U S × R 2 nd U V × V
18 1st2nd2 2 nd U V × V 2 nd U = 1 st 2 nd U 2 nd 2 nd U
19 5 17 18 3syl φ 2 nd U = 1 st 2 nd U 2 nd 2 nd U
20 13 19 opeq12d φ 1 st U 2 nd U = 1 st 1 st U 2 nd 1 st U 1 st 2 nd U 2 nd 2 nd U
21 7 20 eqtrd φ U = 1 st 1 st U 2 nd 1 st U 1 st 2 nd U 2 nd 2 nd U