Metamath Proof Explorer


Theorem fucofunca

Description: The functor composition bifunctor is a functor. See also fucofunc . (Contributed by Zhi Wang, 10-Oct-2025)

Ref Expression
Hypotheses fucofunca.t T = D FuncCat E × c C FuncCat D
fucofunca.q Q = C FuncCat E
fucofunca.c φ C Cat
fucofunca.d φ D Cat
fucofunca.e φ E Cat
Assertion fucofunca Could not format assertion : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) e. ( T Func Q ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 fucofunca.t T = D FuncCat E × c C FuncCat D
2 fucofunca.q Q = C FuncCat E
3 fucofunca.c φ C Cat
4 fucofunca.d φ D Cat
5 fucofunca.e φ E Cat
6 eqidd Could not format ( ph -> ( <. C , D >. o.F E ) = ( <. C , D >. o.F E ) ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = ( <. C , D >. o.F E ) ) with typecode |-
7 3 4 5 6 fucoelvv Could not format ( ph -> ( <. C , D >. o.F E ) e. ( _V X. _V ) ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) e. ( _V X. _V ) ) with typecode |-
8 1st2nd2 Could not format ( ( <. C , D >. o.F E ) e. ( _V X. _V ) -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. ) : No typesetting found for |- ( ( <. C , D >. o.F E ) e. ( _V X. _V ) -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. ) with typecode |-
9 7 8 syl Could not format ( ph -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. ) with typecode |-
10 1 2 9 3 4 5 fucofunc Could not format ( ph -> ( 1st ` ( <. C , D >. o.F E ) ) ( T Func Q ) ( 2nd ` ( <. C , D >. o.F E ) ) ) : No typesetting found for |- ( ph -> ( 1st ` ( <. C , D >. o.F E ) ) ( T Func Q ) ( 2nd ` ( <. C , D >. o.F E ) ) ) with typecode |-
11 df-br Could not format ( ( 1st ` ( <. C , D >. o.F E ) ) ( T Func Q ) ( 2nd ` ( <. C , D >. o.F E ) ) <-> <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. e. ( T Func Q ) ) : No typesetting found for |- ( ( 1st ` ( <. C , D >. o.F E ) ) ( T Func Q ) ( 2nd ` ( <. C , D >. o.F E ) ) <-> <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. e. ( T Func Q ) ) with typecode |-
12 10 11 sylib Could not format ( ph -> <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. e. ( T Func Q ) ) : No typesetting found for |- ( ph -> <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. e. ( T Func Q ) ) with typecode |-
13 9 12 eqeltrd Could not format ( ph -> ( <. C , D >. o.F E ) e. ( T Func Q ) ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) e. ( T Func Q ) ) with typecode |-