Metamath Proof Explorer


Theorem fucoid2

Description: Each identity morphism in the source category is mapped to the corresponding identity morphism in the target category. See also fucoid . (Contributed by Zhi Wang, 30-Sep-2025)

Ref Expression
Hypotheses fucoid.o No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
fucoid.t T = D FuncCat E × c C FuncCat D
fucoid.1 1 ˙ = Id T
fucoid.q Q = C FuncCat E
fucoid.i I = Id Q
fucoid2.w φ W = D Func E × C Func D
fucoid2.u φ U W
Assertion fucoid2 φ U P U 1 ˙ U = I O U

Proof

Step Hyp Ref Expression
1 fucoid.o Could not format ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. O , P >. ) with typecode |-
2 fucoid.t T = D FuncCat E × c C FuncCat D
3 fucoid.1 1 ˙ = Id T
4 fucoid.q Q = C FuncCat E
5 fucoid.i I = Id Q
6 fucoid2.w φ W = D Func E × C Func D
7 fucoid2.u φ U W
8 relfunc Rel D Func E
9 relfunc Rel C Func D
10 6 7 8 9 fuco2eld2 φ U = 1 st 1 st U 2 nd 1 st U 1 st 2 nd U 2 nd 2 nd U
11 7 10 6 3eltr3d φ 1 st 1 st U 2 nd 1 st U 1 st 2 nd U 2 nd 2 nd U D Func E × C Func D
12 opelxp2 1 st 1 st U 2 nd 1 st U 1 st 2 nd U 2 nd 2 nd U D Func E × C Func D 1 st 2 nd U 2 nd 2 nd U C Func D
13 11 12 syl φ 1 st 2 nd U 2 nd 2 nd U C Func D
14 df-br 1 st 2 nd U C Func D 2 nd 2 nd U 1 st 2 nd U 2 nd 2 nd U C Func D
15 13 14 sylibr φ 1 st 2 nd U C Func D 2 nd 2 nd U
16 opelxp1 1 st 1 st U 2 nd 1 st U 1 st 2 nd U 2 nd 2 nd U D Func E × C Func D 1 st 1 st U 2 nd 1 st U D Func E
17 11 16 syl φ 1 st 1 st U 2 nd 1 st U D Func E
18 df-br 1 st 1 st U D Func E 2 nd 1 st U 1 st 1 st U 2 nd 1 st U D Func E
19 17 18 sylibr φ 1 st 1 st U D Func E 2 nd 1 st U
20 1 2 3 4 5 15 19 10 fucoid φ U P U 1 ˙ U = I O U