Metamath Proof Explorer


Theorem fucoppccic

Description: The opposite category of functors is isomorphic to the category of opposite functors. (Contributed by Zhi Wang, 18-Nov-2025)

Ref Expression
Hypotheses fucoppccic.c C = CatCat U
fucoppccic.b B = Base C
fucoppccic.x X = oppCat D FuncCat E
fucoppccic.y Y = oppCat D FuncCat oppCat E
fucoppccic.xb φ X B
fucoppccic.yb φ Y B
fucoppccic.d φ D V
fucoppccic.e φ E W
Assertion fucoppccic φ X 𝑐 C Y

Proof

Step Hyp Ref Expression
1 fucoppccic.c C = CatCat U
2 fucoppccic.b B = Base C
3 fucoppccic.x X = oppCat D FuncCat E
4 fucoppccic.y Y = oppCat D FuncCat oppCat E
5 fucoppccic.xb φ X B
6 fucoppccic.yb φ Y B
7 fucoppccic.d φ D V
8 fucoppccic.e φ E W
9 eqid Iso C = Iso C
10 1 2 elbasfv X B U V
11 1 catccat U V C Cat
12 5 10 11 3syl φ C Cat
13 eqid oppCat D = oppCat D
14 eqid oppCat E = oppCat E
15 eqid D FuncCat E = D FuncCat E
16 eqid D Nat E = D Nat E
17 eqidd Could not format ( ph -> ( oppFunc |` ( D Func E ) ) = ( oppFunc |` ( D Func E ) ) ) : No typesetting found for |- ( ph -> ( oppFunc |` ( D Func E ) ) = ( oppFunc |` ( D Func E ) ) ) with typecode |-
18 eqidd φ f D Func E , g D Func E I g D Nat E f = f D Func E , g D Func E I g D Nat E f
19 13 14 15 3 4 16 17 18 1 2 9 7 8 5 6 fucoppc Could not format ( ph -> ( oppFunc |` ( D Func E ) ) ( X ( Iso ` C ) Y ) ( f e. ( D Func E ) , g e. ( D Func E ) |-> ( _I |` ( g ( D Nat E ) f ) ) ) ) : No typesetting found for |- ( ph -> ( oppFunc |` ( D Func E ) ) ( X ( Iso ` C ) Y ) ( f e. ( D Func E ) , g e. ( D Func E ) |-> ( _I |` ( g ( D Nat E ) f ) ) ) ) with typecode |-
20 df-br Could not format ( ( oppFunc |` ( D Func E ) ) ( X ( Iso ` C ) Y ) ( f e. ( D Func E ) , g e. ( D Func E ) |-> ( _I |` ( g ( D Nat E ) f ) ) ) <-> <. ( oppFunc |` ( D Func E ) ) , ( f e. ( D Func E ) , g e. ( D Func E ) |-> ( _I |` ( g ( D Nat E ) f ) ) ) >. e. ( X ( Iso ` C ) Y ) ) : No typesetting found for |- ( ( oppFunc |` ( D Func E ) ) ( X ( Iso ` C ) Y ) ( f e. ( D Func E ) , g e. ( D Func E ) |-> ( _I |` ( g ( D Nat E ) f ) ) ) <-> <. ( oppFunc |` ( D Func E ) ) , ( f e. ( D Func E ) , g e. ( D Func E ) |-> ( _I |` ( g ( D Nat E ) f ) ) ) >. e. ( X ( Iso ` C ) Y ) ) with typecode |-
21 19 20 sylib Could not format ( ph -> <. ( oppFunc |` ( D Func E ) ) , ( f e. ( D Func E ) , g e. ( D Func E ) |-> ( _I |` ( g ( D Nat E ) f ) ) ) >. e. ( X ( Iso ` C ) Y ) ) : No typesetting found for |- ( ph -> <. ( oppFunc |` ( D Func E ) ) , ( f e. ( D Func E ) , g e. ( D Func E ) |-> ( _I |` ( g ( D Nat E ) f ) ) ) >. e. ( X ( Iso ` C ) Y ) ) with typecode |-
22 9 2 12 5 6 21 brcici φ X 𝑐 C Y