Metamath Proof Explorer


Theorem fullthinc2

Description: A full functor to a thin category maps empty hom-sets to empty hom-sets. (Contributed by Zhi Wang, 1-Oct-2024)

Ref Expression
Hypotheses fullthinc.b B = Base C
fullthinc.j J = Hom D
fullthinc.h H = Hom C
fullthinc.d No typesetting found for |- ( ph -> D e. ThinCat ) with typecode |-
fullthinc2.f φ F C Full D G
fullthinc2.x φ X B
fullthinc2.y φ Y B
Assertion fullthinc2 φ X H Y = F X J F Y =

Proof

Step Hyp Ref Expression
1 fullthinc.b B = Base C
2 fullthinc.j J = Hom D
3 fullthinc.h H = Hom C
4 fullthinc.d Could not format ( ph -> D e. ThinCat ) : No typesetting found for |- ( ph -> D e. ThinCat ) with typecode |-
5 fullthinc2.f φ F C Full D G
6 fullthinc2.x φ X B
7 fullthinc2.y φ Y B
8 fullfunc C Full D C Func D
9 8 ssbri F C Full D G F C Func D G
10 5 9 syl φ F C Func D G
11 1 2 3 4 10 fullthinc φ F C Full D G x B y B x H y = F x J F y =
12 5 11 mpbid φ x B y B x H y = F x J F y =
13 oveq12 x = X y = Y x H y = X H Y
14 13 eqeq1d x = X y = Y x H y = X H Y =
15 simpl x = X y = Y x = X
16 15 fveq2d x = X y = Y F x = F X
17 simpr x = X y = Y y = Y
18 17 fveq2d x = X y = Y F y = F Y
19 16 18 oveq12d x = X y = Y F x J F y = F X J F Y
20 19 eqeq1d x = X y = Y F x J F y = F X J F Y =
21 14 20 imbi12d x = X y = Y x H y = F x J F y = X H Y = F X J F Y =
22 21 rspc2gv X B Y B x B y B x H y = F x J F y = X H Y = F X J F Y =
23 22 imp X B Y B x B y B x H y = F x J F y = X H Y = F X J F Y =
24 6 7 12 23 syl21anc φ X H Y = F X J F Y =
25 1 3 2 10 6 7 funcf2 φ X G Y : X H Y F X J F Y
26 25 f002 φ F X J F Y = X H Y =
27 24 26 impbid φ X H Y = F X J F Y =