Metamath Proof Explorer


Theorem fullthinc2

Description: A full functor to a thin category maps empty hom-sets to empty hom-sets. (Contributed by Zhi Wang, 1-Oct-2024)

Ref Expression
Hypotheses fullthinc.b 𝐵 = ( Base ‘ 𝐶 )
fullthinc.j 𝐽 = ( Hom ‘ 𝐷 )
fullthinc.h 𝐻 = ( Hom ‘ 𝐶 )
fullthinc.d ( 𝜑𝐷 ∈ ThinCat )
fullthinc2.f ( 𝜑𝐹 ( 𝐶 Full 𝐷 ) 𝐺 )
fullthinc2.x ( 𝜑𝑋𝐵 )
fullthinc2.y ( 𝜑𝑌𝐵 )
Assertion fullthinc2 ( 𝜑 → ( ( 𝑋 𝐻 𝑌 ) = ∅ ↔ ( ( 𝐹𝑋 ) 𝐽 ( 𝐹𝑌 ) ) = ∅ ) )

Proof

Step Hyp Ref Expression
1 fullthinc.b 𝐵 = ( Base ‘ 𝐶 )
2 fullthinc.j 𝐽 = ( Hom ‘ 𝐷 )
3 fullthinc.h 𝐻 = ( Hom ‘ 𝐶 )
4 fullthinc.d ( 𝜑𝐷 ∈ ThinCat )
5 fullthinc2.f ( 𝜑𝐹 ( 𝐶 Full 𝐷 ) 𝐺 )
6 fullthinc2.x ( 𝜑𝑋𝐵 )
7 fullthinc2.y ( 𝜑𝑌𝐵 )
8 fullfunc ( 𝐶 Full 𝐷 ) ⊆ ( 𝐶 Func 𝐷 )
9 8 ssbri ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )
10 5 9 syl ( 𝜑𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )
11 1 2 3 4 10 fullthinc ( 𝜑 → ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ↔ ∀ 𝑥𝐵𝑦𝐵 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) = ∅ ) ) )
12 5 11 mpbid ( 𝜑 → ∀ 𝑥𝐵𝑦𝐵 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) = ∅ ) )
13 oveq12 ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑌 ) )
14 13 eqeq1d ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( 𝑋 𝐻 𝑌 ) = ∅ ) )
15 simpl ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → 𝑥 = 𝑋 )
16 15 fveq2d ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( 𝐹𝑥 ) = ( 𝐹𝑋 ) )
17 simpr ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → 𝑦 = 𝑌 )
18 17 fveq2d ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( 𝐹𝑦 ) = ( 𝐹𝑌 ) )
19 16 18 oveq12d ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) = ( ( 𝐹𝑋 ) 𝐽 ( 𝐹𝑌 ) ) )
20 19 eqeq1d ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) = ∅ ↔ ( ( 𝐹𝑋 ) 𝐽 ( 𝐹𝑌 ) ) = ∅ ) )
21 14 20 imbi12d ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) = ∅ ) ↔ ( ( 𝑋 𝐻 𝑌 ) = ∅ → ( ( 𝐹𝑋 ) 𝐽 ( 𝐹𝑌 ) ) = ∅ ) ) )
22 21 rspc2gv ( ( 𝑋𝐵𝑌𝐵 ) → ( ∀ 𝑥𝐵𝑦𝐵 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) = ∅ ) → ( ( 𝑋 𝐻 𝑌 ) = ∅ → ( ( 𝐹𝑋 ) 𝐽 ( 𝐹𝑌 ) ) = ∅ ) ) )
23 22 imp ( ( ( 𝑋𝐵𝑌𝐵 ) ∧ ∀ 𝑥𝐵𝑦𝐵 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) = ∅ ) ) → ( ( 𝑋 𝐻 𝑌 ) = ∅ → ( ( 𝐹𝑋 ) 𝐽 ( 𝐹𝑌 ) ) = ∅ ) )
24 6 7 12 23 syl21anc ( 𝜑 → ( ( 𝑋 𝐻 𝑌 ) = ∅ → ( ( 𝐹𝑋 ) 𝐽 ( 𝐹𝑌 ) ) = ∅ ) )
25 1 3 2 10 6 7 funcf2 ( 𝜑 → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) ⟶ ( ( 𝐹𝑋 ) 𝐽 ( 𝐹𝑌 ) ) )
26 25 f002 ( 𝜑 → ( ( ( 𝐹𝑋 ) 𝐽 ( 𝐹𝑌 ) ) = ∅ → ( 𝑋 𝐻 𝑌 ) = ∅ ) )
27 24 26 impbid ( 𝜑 → ( ( 𝑋 𝐻 𝑌 ) = ∅ ↔ ( ( 𝐹𝑋 ) 𝐽 ( 𝐹𝑌 ) ) = ∅ ) )