Metamath Proof Explorer


Theorem funbreq

Description: An equality condition for functions. (Contributed by Scott Fenton, 18-Feb-2013)

Ref Expression
Hypotheses funbreq.1 A V
funbreq.2 B V
funbreq.3 C V
Assertion funbreq Fun F A F B A F C B = C

Proof

Step Hyp Ref Expression
1 funbreq.1 A V
2 funbreq.2 B V
3 funbreq.3 C V
4 1 2 3 fununiq Fun F A F B A F C B = C
5 4 expdimp Fun F A F B A F C B = C
6 breq2 B = C A F B A F C
7 6 biimpcd A F B B = C A F C
8 7 adantl Fun F A F B B = C A F C
9 5 8 impbid Fun F A F B A F C B = C