Metamath Proof Explorer


Theorem funbreq

Description: An equality condition for functions. (Contributed by Scott Fenton, 18-Feb-2013)

Ref Expression
Hypotheses funbreq.1 AV
funbreq.2 BV
funbreq.3 CV
Assertion funbreq FunFAFBAFCB=C

Proof

Step Hyp Ref Expression
1 funbreq.1 AV
2 funbreq.2 BV
3 funbreq.3 CV
4 1 2 3 fununiq FunFAFBAFCB=C
5 4 expdimp FunFAFBAFCB=C
6 breq2 B=CAFBAFC
7 6 biimpcd AFBB=CAFC
8 7 adantl FunFAFBB=CAFC
9 5 8 impbid FunFAFBAFCB=C