Metamath Proof Explorer


Theorem funbrfv2b

Description: Function value in terms of a binary relation. (Contributed by Mario Carneiro, 19-Mar-2014)

Ref Expression
Assertion funbrfv2b FunFAFBAdomFFA=B

Proof

Step Hyp Ref Expression
1 funrel FunFRelF
2 releldm RelFAFBAdomF
3 2 ex RelFAFBAdomF
4 1 3 syl FunFAFBAdomF
5 4 pm4.71rd FunFAFBAdomFAFB
6 funbrfvb FunFAdomFFA=BAFB
7 6 pm5.32da FunFAdomFFA=BAdomFAFB
8 5 7 bitr4d FunFAFBAdomFFA=B