Metamath Proof Explorer


Theorem funcnv

Description: The converse of a class is a function iff the class is single-rooted, which means that for any y in the range of A there is at most one x such that x A y . Definition of single-rooted in Enderton p. 43. See funcnv2 for a simpler version. (Contributed by NM, 13-Aug-2004)

Ref Expression
Assertion funcnv FunA-1yranA*xxAy

Proof

Step Hyp Ref Expression
1 vex xV
2 vex yV
3 1 2 brelrn xAyyranA
4 3 pm4.71ri xAyyranAxAy
5 4 mobii *xxAy*xyranAxAy
6 moanimv *xyranAxAyyranA*xxAy
7 5 6 bitri *xxAyyranA*xxAy
8 7 albii y*xxAyyyranA*xxAy
9 funcnv2 FunA-1y*xxAy
10 df-ral yranA*xxAyyyranA*xxAy
11 8 9 10 3bitr4i FunA-1yranA*xxAy