Metamath Proof Explorer


Theorem funcnv4mpt

Description: Two ways to say that a function in maps-to notation is single-rooted. (Contributed by Thierry Arnoux, 2-Mar-2017)

Ref Expression
Hypotheses funcnvmpt.0 xφ
funcnvmpt.1 _xA
funcnvmpt.2 _xF
funcnvmpt.3 F=xAB
funcnvmpt.4 φxABV
Assertion funcnv4mpt φFunF-1iAjAi=ji/xBj/xB

Proof

Step Hyp Ref Expression
1 funcnvmpt.0 xφ
2 funcnvmpt.1 _xA
3 funcnvmpt.2 _xF
4 funcnvmpt.3 F=xAB
5 funcnvmpt.4 φxABV
6 nfv iφ
7 nfcv _iA
8 nfcv _iF
9 nfcv _iB
10 nfcsb1v _xi/xB
11 csbeq1a x=iB=i/xB
12 2 7 9 10 11 cbvmptf xAB=iAi/xB
13 4 12 eqtri F=iAi/xB
14 5 sbimi ixφxAixBV
15 nfcv _xi
16 15 2 nfel xiA
17 1 16 nfan xφiA
18 eleq1w x=ixAiA
19 18 anbi2d x=iφxAφiA
20 17 19 sbiev ixφxAφiA
21 nfcv _xV
22 10 21 nfel xi/xBV
23 11 eleq1d x=iBVi/xBV
24 22 23 sbiev ixBVi/xBV
25 14 20 24 3imtr3i φiAi/xBV
26 csbeq1 i=ji/xB=j/xB
27 6 7 8 13 25 26 funcnv5mpt φFunF-1iAjAi=ji/xBj/xB