Metamath Proof Explorer


Theorem funcnv5mpt

Description: Two ways to say that a function in maps-to notation is single-rooted. (Contributed by Thierry Arnoux, 1-Mar-2017)

Ref Expression
Hypotheses funcnvmpt.0 xφ
funcnvmpt.1 _xA
funcnvmpt.2 _xF
funcnvmpt.3 F=xAB
funcnvmpt.4 φxABV
funcnv5mpt.1 x=zB=C
Assertion funcnv5mpt φFunF-1xAzAx=zBC

Proof

Step Hyp Ref Expression
1 funcnvmpt.0 xφ
2 funcnvmpt.1 _xA
3 funcnvmpt.2 _xF
4 funcnvmpt.3 F=xAB
5 funcnvmpt.4 φxABV
6 funcnv5mpt.1 x=zB=C
7 1 2 3 4 5 funcnvmpt φFunF-1y*xAy=B
8 nne ¬BCB=C
9 eqvincg BVB=Cyy=By=C
10 5 9 syl φxAB=Cyy=By=C
11 8 10 bitrid φxA¬BCyy=By=C
12 11 imbi1d φxA¬BCx=zyy=By=Cx=z
13 orcom x=zBCBCx=z
14 df-or BCx=z¬BCx=z
15 13 14 bitri x=zBC¬BCx=z
16 19.23v yy=By=Cx=zyy=By=Cx=z
17 12 15 16 3bitr4g φxAx=zBCyy=By=Cx=z
18 17 ralbidv φxAzAx=zBCzAyy=By=Cx=z
19 ralcom4 zAyy=By=Cx=zyzAy=By=Cx=z
20 18 19 bitrdi φxAzAx=zBCyzAy=By=Cx=z
21 1 20 ralbida φxAzAx=zBCxAyzAy=By=Cx=z
22 nfcv _zA
23 nfv xy=C
24 6 eqeq2d x=zy=By=C
25 2 22 23 24 rmo4f *xAy=BxAzAy=By=Cx=z
26 25 albii y*xAy=ByxAzAy=By=Cx=z
27 ralcom4 xAyzAy=By=Cx=zyxAzAy=By=Cx=z
28 26 27 bitr4i y*xAy=BxAyzAy=By=Cx=z
29 21 28 bitr4di φxAzAx=zBCy*xAy=B
30 7 29 bitr4d φFunF-1xAzAx=zBC