Metamath Proof Explorer


Theorem funcnvsn

Description: The converse singleton of an ordered pair is a function. This is equivalent to funsn via cnvsn , but stating it this way allows to skip the sethood assumptions on A and B . (Contributed by NM, 30-Apr-2015)

Ref Expression
Assertion funcnvsn FunAB-1

Proof

Step Hyp Ref Expression
1 relcnv RelAB-1
2 moeq *yy=A
3 vex xV
4 vex yV
5 3 4 brcnv xAB-1yyABx
6 df-br yABxyxAB
7 5 6 bitri xAB-1yyxAB
8 elsni yxAByx=AB
9 4 3 opth1 yx=ABy=A
10 8 9 syl yxABy=A
11 7 10 sylbi xAB-1yy=A
12 11 moimi *yy=A*yxAB-1y
13 2 12 ax-mp *yxAB-1y
14 13 ax-gen x*yxAB-1y
15 dffun6 FunAB-1RelAB-1x*yxAB-1y
16 1 14 15 mpbir2an FunAB-1