Metamath Proof Explorer


Theorem funconstss

Description: Two ways of specifying that a function is constant on a subdomain. (Contributed by NM, 8-Mar-2007)

Ref Expression
Assertion funconstss FunFAdomFxAFx=BAF-1B

Proof

Step Hyp Ref Expression
1 funimass4 FunFAdomFFABxAFxB
2 fvex FxV
3 2 elsn FxBFx=B
4 3 ralbii xAFxBxAFx=B
5 1 4 bitr2di FunFAdomFxAFx=BFAB
6 funimass3 FunFAdomFFABAF-1B
7 5 6 bitrd FunFAdomFxAFx=BAF-1B