Metamath Proof Explorer


Theorem fvimacnvALT

Description: Alternate proof of fvimacnv , based on funimass3 . If funimass3 is ever proved directly, as opposed to using funimacnv pointwise, then the proof of funimacnv should be replaced with this one. (Contributed by Raph Levien, 20-Nov-2006) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion fvimacnvALT Fun F A dom F F A B A F -1 B

Proof

Step Hyp Ref Expression
1 snssi A dom F A dom F
2 funimass3 Fun F A dom F F A B A F -1 B
3 1 2 sylan2 Fun F A dom F F A B A F -1 B
4 fvex F A V
5 4 snss F A B F A B
6 eqid dom F = dom F
7 df-fn F Fn dom F Fun F dom F = dom F
8 7 biimpri Fun F dom F = dom F F Fn dom F
9 6 8 mpan2 Fun F F Fn dom F
10 fnsnfv F Fn dom F A dom F F A = F A
11 9 10 sylan Fun F A dom F F A = F A
12 11 sseq1d Fun F A dom F F A B F A B
13 5 12 bitrid Fun F A dom F F A B F A B
14 snssg A dom F A F -1 B A F -1 B
15 14 adantl Fun F A dom F A F -1 B A F -1 B
16 3 13 15 3bitr4d Fun F A dom F F A B A F -1 B