Metamath Proof Explorer


Theorem funcringcsetcALTV2lem5

Description: Lemma 5 for funcringcsetcALTV2 . (Contributed by AV, 15-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses funcringcsetcALTV2.r R=RingCatU
funcringcsetcALTV2.s S=SetCatU
funcringcsetcALTV2.b B=BaseR
funcringcsetcALTV2.c C=BaseS
funcringcsetcALTV2.u φUWUni
funcringcsetcALTV2.f φF=xBBasex
funcringcsetcALTV2.g φG=xB,yBIxRingHomy
Assertion funcringcsetcALTV2lem5 φXBYBXGY=IXRingHomY

Proof

Step Hyp Ref Expression
1 funcringcsetcALTV2.r R=RingCatU
2 funcringcsetcALTV2.s S=SetCatU
3 funcringcsetcALTV2.b B=BaseR
4 funcringcsetcALTV2.c C=BaseS
5 funcringcsetcALTV2.u φUWUni
6 funcringcsetcALTV2.f φF=xBBasex
7 funcringcsetcALTV2.g φG=xB,yBIxRingHomy
8 7 adantr φXBYBG=xB,yBIxRingHomy
9 oveq12 x=Xy=YxRingHomy=XRingHomY
10 9 adantl φXBYBx=Xy=YxRingHomy=XRingHomY
11 10 reseq2d φXBYBx=Xy=YIxRingHomy=IXRingHomY
12 simprl φXBYBXB
13 simprr φXBYBYB
14 ovexd φXBYBXRingHomYV
15 14 resiexd φXBYBIXRingHomYV
16 8 11 12 13 15 ovmpod φXBYBXGY=IXRingHomY