Metamath Proof Explorer


Theorem funcringcsetcALTV2lem6

Description: Lemma 6 for funcringcsetcALTV2 . (Contributed by AV, 15-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses funcringcsetcALTV2.r R = RingCat U
funcringcsetcALTV2.s S = SetCat U
funcringcsetcALTV2.b B = Base R
funcringcsetcALTV2.c C = Base S
funcringcsetcALTV2.u φ U WUni
funcringcsetcALTV2.f φ F = x B Base x
funcringcsetcALTV2.g φ G = x B , y B I x RingHom y
Assertion funcringcsetcALTV2lem6 φ X B Y B H X RingHom Y X G Y H = H

Proof

Step Hyp Ref Expression
1 funcringcsetcALTV2.r R = RingCat U
2 funcringcsetcALTV2.s S = SetCat U
3 funcringcsetcALTV2.b B = Base R
4 funcringcsetcALTV2.c C = Base S
5 funcringcsetcALTV2.u φ U WUni
6 funcringcsetcALTV2.f φ F = x B Base x
7 funcringcsetcALTV2.g φ G = x B , y B I x RingHom y
8 1 2 3 4 5 6 7 funcringcsetcALTV2lem5 φ X B Y B X G Y = I X RingHom Y
9 8 3adant3 φ X B Y B H X RingHom Y X G Y = I X RingHom Y
10 9 fveq1d φ X B Y B H X RingHom Y X G Y H = I X RingHom Y H
11 fvresi H X RingHom Y I X RingHom Y H = H
12 11 3ad2ant3 φ X B Y B H X RingHom Y I X RingHom Y H = H
13 10 12 eqtrd φ X B Y B H X RingHom Y X G Y H = H