Step |
Hyp |
Ref |
Expression |
1 |
|
funcringcsetcALTV2.r |
⊢ 𝑅 = ( RingCat ‘ 𝑈 ) |
2 |
|
funcringcsetcALTV2.s |
⊢ 𝑆 = ( SetCat ‘ 𝑈 ) |
3 |
|
funcringcsetcALTV2.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
4 |
|
funcringcsetcALTV2.c |
⊢ 𝐶 = ( Base ‘ 𝑆 ) |
5 |
|
funcringcsetcALTV2.u |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
6 |
|
funcringcsetcALTV2.f |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) |
7 |
|
funcringcsetcALTV2.g |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 RingHom 𝑦 ) ) ) ) |
8 |
1 2 3 4 5 6 7
|
funcringcsetcALTV2lem5 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 𝐺 𝑌 ) = ( I ↾ ( 𝑋 RingHom 𝑌 ) ) ) |
9 |
8
|
3adant3 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ) → ( 𝑋 𝐺 𝑌 ) = ( I ↾ ( 𝑋 RingHom 𝑌 ) ) ) |
10 |
9
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) = ( ( I ↾ ( 𝑋 RingHom 𝑌 ) ) ‘ 𝐻 ) ) |
11 |
|
fvresi |
⊢ ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) → ( ( I ↾ ( 𝑋 RingHom 𝑌 ) ) ‘ 𝐻 ) = 𝐻 ) |
12 |
11
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ) → ( ( I ↾ ( 𝑋 RingHom 𝑌 ) ) ‘ 𝐻 ) = 𝐻 ) |
13 |
10 12
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) = 𝐻 ) |