Step |
Hyp |
Ref |
Expression |
1 |
|
funcringcsetcALTV2.r |
⊢ 𝑅 = ( RingCat ‘ 𝑈 ) |
2 |
|
funcringcsetcALTV2.s |
⊢ 𝑆 = ( SetCat ‘ 𝑈 ) |
3 |
|
funcringcsetcALTV2.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
4 |
|
funcringcsetcALTV2.c |
⊢ 𝐶 = ( Base ‘ 𝑆 ) |
5 |
|
funcringcsetcALTV2.u |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
6 |
|
funcringcsetcALTV2.f |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) |
7 |
|
funcringcsetcALTV2.g |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 RingHom 𝑦 ) ) ) ) |
8 |
|
eqid |
⊢ ( Hom ‘ 𝑅 ) = ( Hom ‘ 𝑅 ) |
9 |
|
eqid |
⊢ ( Hom ‘ 𝑆 ) = ( Hom ‘ 𝑆 ) |
10 |
|
eqid |
⊢ ( Id ‘ 𝑅 ) = ( Id ‘ 𝑅 ) |
11 |
|
eqid |
⊢ ( Id ‘ 𝑆 ) = ( Id ‘ 𝑆 ) |
12 |
|
eqid |
⊢ ( comp ‘ 𝑅 ) = ( comp ‘ 𝑅 ) |
13 |
|
eqid |
⊢ ( comp ‘ 𝑆 ) = ( comp ‘ 𝑆 ) |
14 |
1
|
ringccat |
⊢ ( 𝑈 ∈ WUni → 𝑅 ∈ Cat ) |
15 |
5 14
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Cat ) |
16 |
2
|
setccat |
⊢ ( 𝑈 ∈ WUni → 𝑆 ∈ Cat ) |
17 |
5 16
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Cat ) |
18 |
1 2 3 4 5 6
|
funcringcsetcALTV2lem3 |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) |
19 |
1 2 3 4 5 6 7
|
funcringcsetcALTV2lem4 |
⊢ ( 𝜑 → 𝐺 Fn ( 𝐵 × 𝐵 ) ) |
20 |
1 2 3 4 5 6 7
|
funcringcsetcALTV2lem8 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝑅 ) 𝑏 ) ⟶ ( ( 𝐹 ‘ 𝑎 ) ( Hom ‘ 𝑆 ) ( 𝐹 ‘ 𝑏 ) ) ) |
21 |
1 2 3 4 5 6 7
|
funcringcsetcALTV2lem7 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑎 𝐺 𝑎 ) ‘ ( ( Id ‘ 𝑅 ) ‘ 𝑎 ) ) = ( ( Id ‘ 𝑆 ) ‘ ( 𝐹 ‘ 𝑎 ) ) ) |
22 |
1 2 3 4 5 6 7
|
funcringcsetcALTV2lem9 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ∧ ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝑅 ) 𝑏 ) ∧ 𝑘 ∈ ( 𝑏 ( Hom ‘ 𝑅 ) 𝑐 ) ) ) → ( ( 𝑎 𝐺 𝑐 ) ‘ ( 𝑘 ( 〈 𝑎 , 𝑏 〉 ( comp ‘ 𝑅 ) 𝑐 ) ℎ ) ) = ( ( ( 𝑏 𝐺 𝑐 ) ‘ 𝑘 ) ( 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) 〉 ( comp ‘ 𝑆 ) ( 𝐹 ‘ 𝑐 ) ) ( ( 𝑎 𝐺 𝑏 ) ‘ ℎ ) ) ) |
23 |
3 4 8 9 10 11 12 13 15 17 18 19 20 21 22
|
isfuncd |
⊢ ( 𝜑 → 𝐹 ( 𝑅 Func 𝑆 ) 𝐺 ) |