Step |
Hyp |
Ref |
Expression |
1 |
|
funcringcsetcALTV2.r |
|- R = ( RingCat ` U ) |
2 |
|
funcringcsetcALTV2.s |
|- S = ( SetCat ` U ) |
3 |
|
funcringcsetcALTV2.b |
|- B = ( Base ` R ) |
4 |
|
funcringcsetcALTV2.c |
|- C = ( Base ` S ) |
5 |
|
funcringcsetcALTV2.u |
|- ( ph -> U e. WUni ) |
6 |
|
funcringcsetcALTV2.f |
|- ( ph -> F = ( x e. B |-> ( Base ` x ) ) ) |
7 |
|
funcringcsetcALTV2.g |
|- ( ph -> G = ( x e. B , y e. B |-> ( _I |` ( x RingHom y ) ) ) ) |
8 |
|
eqid |
|- ( Hom ` R ) = ( Hom ` R ) |
9 |
|
eqid |
|- ( Hom ` S ) = ( Hom ` S ) |
10 |
|
eqid |
|- ( Id ` R ) = ( Id ` R ) |
11 |
|
eqid |
|- ( Id ` S ) = ( Id ` S ) |
12 |
|
eqid |
|- ( comp ` R ) = ( comp ` R ) |
13 |
|
eqid |
|- ( comp ` S ) = ( comp ` S ) |
14 |
1
|
ringccat |
|- ( U e. WUni -> R e. Cat ) |
15 |
5 14
|
syl |
|- ( ph -> R e. Cat ) |
16 |
2
|
setccat |
|- ( U e. WUni -> S e. Cat ) |
17 |
5 16
|
syl |
|- ( ph -> S e. Cat ) |
18 |
1 2 3 4 5 6
|
funcringcsetcALTV2lem3 |
|- ( ph -> F : B --> C ) |
19 |
1 2 3 4 5 6 7
|
funcringcsetcALTV2lem4 |
|- ( ph -> G Fn ( B X. B ) ) |
20 |
1 2 3 4 5 6 7
|
funcringcsetcALTV2lem8 |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( a G b ) : ( a ( Hom ` R ) b ) --> ( ( F ` a ) ( Hom ` S ) ( F ` b ) ) ) |
21 |
1 2 3 4 5 6 7
|
funcringcsetcALTV2lem7 |
|- ( ( ph /\ a e. B ) -> ( ( a G a ) ` ( ( Id ` R ) ` a ) ) = ( ( Id ` S ) ` ( F ` a ) ) ) |
22 |
1 2 3 4 5 6 7
|
funcringcsetcALTV2lem9 |
|- ( ( ph /\ ( a e. B /\ b e. B /\ c e. B ) /\ ( h e. ( a ( Hom ` R ) b ) /\ k e. ( b ( Hom ` R ) c ) ) ) -> ( ( a G c ) ` ( k ( <. a , b >. ( comp ` R ) c ) h ) ) = ( ( ( b G c ) ` k ) ( <. ( F ` a ) , ( F ` b ) >. ( comp ` S ) ( F ` c ) ) ( ( a G b ) ` h ) ) ) |
23 |
3 4 8 9 10 11 12 13 15 17 18 19 20 21 22
|
isfuncd |
|- ( ph -> F ( R Func S ) G ) |