Metamath Proof Explorer


Theorem funcringcsetcALTV2lem3

Description: Lemma 3 for funcringcsetcALTV2 . (Contributed by AV, 15-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses funcringcsetcALTV2.r 𝑅 = ( RingCat ‘ 𝑈 )
funcringcsetcALTV2.s 𝑆 = ( SetCat ‘ 𝑈 )
funcringcsetcALTV2.b 𝐵 = ( Base ‘ 𝑅 )
funcringcsetcALTV2.c 𝐶 = ( Base ‘ 𝑆 )
funcringcsetcALTV2.u ( 𝜑𝑈 ∈ WUni )
funcringcsetcALTV2.f ( 𝜑𝐹 = ( 𝑥𝐵 ↦ ( Base ‘ 𝑥 ) ) )
Assertion funcringcsetcALTV2lem3 ( 𝜑𝐹 : 𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 funcringcsetcALTV2.r 𝑅 = ( RingCat ‘ 𝑈 )
2 funcringcsetcALTV2.s 𝑆 = ( SetCat ‘ 𝑈 )
3 funcringcsetcALTV2.b 𝐵 = ( Base ‘ 𝑅 )
4 funcringcsetcALTV2.c 𝐶 = ( Base ‘ 𝑆 )
5 funcringcsetcALTV2.u ( 𝜑𝑈 ∈ WUni )
6 funcringcsetcALTV2.f ( 𝜑𝐹 = ( 𝑥𝐵 ↦ ( Base ‘ 𝑥 ) ) )
7 1 3 5 ringcbasbas ( ( 𝜑𝑥𝐵 ) → ( Base ‘ 𝑥 ) ∈ 𝑈 )
8 2 5 setcbas ( 𝜑𝑈 = ( Base ‘ 𝑆 ) )
9 8 eqcomd ( 𝜑 → ( Base ‘ 𝑆 ) = 𝑈 )
10 9 adantr ( ( 𝜑𝑥𝐵 ) → ( Base ‘ 𝑆 ) = 𝑈 )
11 7 10 eleqtrrd ( ( 𝜑𝑥𝐵 ) → ( Base ‘ 𝑥 ) ∈ ( Base ‘ 𝑆 ) )
12 11 4 eleqtrrdi ( ( 𝜑𝑥𝐵 ) → ( Base ‘ 𝑥 ) ∈ 𝐶 )
13 12 fmpttd ( 𝜑 → ( 𝑥𝐵 ↦ ( Base ‘ 𝑥 ) ) : 𝐵𝐶 )
14 6 feq1d ( 𝜑 → ( 𝐹 : 𝐵𝐶 ↔ ( 𝑥𝐵 ↦ ( Base ‘ 𝑥 ) ) : 𝐵𝐶 ) )
15 13 14 mpbird ( 𝜑𝐹 : 𝐵𝐶 )