Step |
Hyp |
Ref |
Expression |
1 |
|
ringcbasbas.r |
⊢ 𝐶 = ( RingCat ‘ 𝑈 ) |
2 |
|
ringcbasbas.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
ringcbasbas.u |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
4 |
1 2 3
|
ringcbas |
⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Ring ) ) |
5 |
4
|
eleq2d |
⊢ ( 𝜑 → ( 𝑅 ∈ 𝐵 ↔ 𝑅 ∈ ( 𝑈 ∩ Ring ) ) ) |
6 |
|
elin |
⊢ ( 𝑅 ∈ ( 𝑈 ∩ Ring ) ↔ ( 𝑅 ∈ 𝑈 ∧ 𝑅 ∈ Ring ) ) |
7 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
8 |
|
simpl |
⊢ ( ( 𝑈 ∈ WUni ∧ 𝑅 ∈ 𝑈 ) → 𝑈 ∈ WUni ) |
9 |
|
simpr |
⊢ ( ( 𝑈 ∈ WUni ∧ 𝑅 ∈ 𝑈 ) → 𝑅 ∈ 𝑈 ) |
10 |
7 8 9
|
wunstr |
⊢ ( ( 𝑈 ∈ WUni ∧ 𝑅 ∈ 𝑈 ) → ( Base ‘ 𝑅 ) ∈ 𝑈 ) |
11 |
10
|
ex |
⊢ ( 𝑈 ∈ WUni → ( 𝑅 ∈ 𝑈 → ( Base ‘ 𝑅 ) ∈ 𝑈 ) ) |
12 |
11 3
|
syl11 |
⊢ ( 𝑅 ∈ 𝑈 → ( 𝜑 → ( Base ‘ 𝑅 ) ∈ 𝑈 ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝑅 ∈ 𝑈 ∧ 𝑅 ∈ Ring ) → ( 𝜑 → ( Base ‘ 𝑅 ) ∈ 𝑈 ) ) |
14 |
6 13
|
sylbi |
⊢ ( 𝑅 ∈ ( 𝑈 ∩ Ring ) → ( 𝜑 → ( Base ‘ 𝑅 ) ∈ 𝑈 ) ) |
15 |
14
|
com12 |
⊢ ( 𝜑 → ( 𝑅 ∈ ( 𝑈 ∩ Ring ) → ( Base ‘ 𝑅 ) ∈ 𝑈 ) ) |
16 |
5 15
|
sylbid |
⊢ ( 𝜑 → ( 𝑅 ∈ 𝐵 → ( Base ‘ 𝑅 ) ∈ 𝑈 ) ) |
17 |
16
|
imp |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ 𝐵 ) → ( Base ‘ 𝑅 ) ∈ 𝑈 ) |