Step |
Hyp |
Ref |
Expression |
1 |
|
funcringcsetc.r |
⊢ 𝑅 = ( RingCat ‘ 𝑈 ) |
2 |
|
funcringcsetc.s |
⊢ 𝑆 = ( SetCat ‘ 𝑈 ) |
3 |
|
funcringcsetc.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
4 |
|
funcringcsetc.u |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
5 |
|
funcringcsetc.f |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) |
6 |
|
funcringcsetc.g |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 RingHom 𝑦 ) ) ) ) |
7 |
|
eqid |
⊢ ( ExtStrCat ‘ 𝑈 ) = ( ExtStrCat ‘ 𝑈 ) |
8 |
|
eqid |
⊢ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) = ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
10 |
7 4
|
estrcbas |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ) |
11 |
10
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) = ( 𝑥 ∈ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ↦ ( Base ‘ 𝑥 ) ) ) |
12 |
|
mpoeq12 |
⊢ ( ( 𝑈 = ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ∧ 𝑈 = ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ) → ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) , 𝑦 ∈ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ) |
13 |
10 10 12
|
syl2anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) , 𝑦 ∈ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ) |
14 |
7 2 8 9 4 11 13
|
funcestrcsetc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) ( ( ExtStrCat ‘ 𝑈 ) Func 𝑆 ) ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ) |
15 |
|
df-br |
⊢ ( ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) ( ( ExtStrCat ‘ 𝑈 ) Func 𝑆 ) ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ↔ 〈 ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) , ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) 〉 ∈ ( ( ExtStrCat ‘ 𝑈 ) Func 𝑆 ) ) |
16 |
14 15
|
sylib |
⊢ ( 𝜑 → 〈 ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) , ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) 〉 ∈ ( ( ExtStrCat ‘ 𝑈 ) Func 𝑆 ) ) |
17 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
18 |
1 17 4
|
ringcbas |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( 𝑈 ∩ Ring ) ) |
19 |
|
incom |
⊢ ( 𝑈 ∩ Ring ) = ( Ring ∩ 𝑈 ) |
20 |
18 19
|
eqtrdi |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Ring ∩ 𝑈 ) ) |
21 |
|
eqid |
⊢ ( Hom ‘ 𝑅 ) = ( Hom ‘ 𝑅 ) |
22 |
1 17 4 21
|
ringchomfval |
⊢ ( 𝜑 → ( Hom ‘ 𝑅 ) = ( RingHom ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ) |
23 |
7 4 20 22
|
rhmsubcsetc |
⊢ ( 𝜑 → ( Hom ‘ 𝑅 ) ∈ ( Subcat ‘ ( ExtStrCat ‘ 𝑈 ) ) ) |
24 |
16 23
|
funcres |
⊢ ( 𝜑 → ( 〈 ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) , ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) 〉 ↾f ( Hom ‘ 𝑅 ) ) ∈ ( ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) Func 𝑆 ) ) |
25 |
|
mptexg |
⊢ ( 𝑈 ∈ WUni → ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) ∈ V ) |
26 |
4 25
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) ∈ V ) |
27 |
|
fvex |
⊢ ( Hom ‘ 𝑅 ) ∈ V |
28 |
27
|
a1i |
⊢ ( 𝜑 → ( Hom ‘ 𝑅 ) ∈ V ) |
29 |
|
mpoexga |
⊢ ( ( 𝑈 ∈ WUni ∧ 𝑈 ∈ WUni ) → ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ∈ V ) |
30 |
4 4 29
|
syl2anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ∈ V ) |
31 |
18 22
|
rhmresfn |
⊢ ( 𝜑 → ( Hom ‘ 𝑅 ) Fn ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) |
32 |
26 28 30 31
|
resfval2 |
⊢ ( 𝜑 → ( 〈 ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) , ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) 〉 ↾f ( Hom ‘ 𝑅 ) ) = 〈 ( ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) ↾ ( Base ‘ 𝑅 ) ) , ( 𝑎 ∈ ( Base ‘ 𝑅 ) , 𝑏 ∈ ( Base ‘ 𝑅 ) ↦ ( ( 𝑎 ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) 𝑏 ) ↾ ( 𝑎 ( Hom ‘ 𝑅 ) 𝑏 ) ) ) 〉 ) |
33 |
|
inss1 |
⊢ ( 𝑈 ∩ Ring ) ⊆ 𝑈 |
34 |
18 33
|
eqsstrdi |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) ⊆ 𝑈 ) |
35 |
34
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) ↾ ( Base ‘ 𝑅 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ ( Base ‘ 𝑥 ) ) ) |
36 |
3
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) |
37 |
36
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ ( Base ‘ 𝑥 ) ) ) |
38 |
5 37
|
eqtr2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ ( Base ‘ 𝑥 ) ) = 𝐹 ) |
39 |
35 38
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) ↾ ( Base ‘ 𝑅 ) ) = 𝐹 ) |
40 |
|
oveq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 RingHom 𝑦 ) = ( 𝑎 RingHom 𝑦 ) ) |
41 |
40
|
reseq2d |
⊢ ( 𝑥 = 𝑎 → ( I ↾ ( 𝑥 RingHom 𝑦 ) ) = ( I ↾ ( 𝑎 RingHom 𝑦 ) ) ) |
42 |
|
oveq2 |
⊢ ( 𝑦 = 𝑏 → ( 𝑎 RingHom 𝑦 ) = ( 𝑎 RingHom 𝑏 ) ) |
43 |
42
|
reseq2d |
⊢ ( 𝑦 = 𝑏 → ( I ↾ ( 𝑎 RingHom 𝑦 ) ) = ( I ↾ ( 𝑎 RingHom 𝑏 ) ) ) |
44 |
41 43
|
cbvmpov |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 RingHom 𝑦 ) ) ) = ( 𝑎 ∈ 𝐵 , 𝑏 ∈ 𝐵 ↦ ( I ↾ ( 𝑎 RingHom 𝑏 ) ) ) |
45 |
44
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 RingHom 𝑦 ) ) ) = ( 𝑎 ∈ 𝐵 , 𝑏 ∈ 𝐵 ↦ ( I ↾ ( 𝑎 RingHom 𝑏 ) ) ) ) |
46 |
3
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝐵 = ( Base ‘ 𝑅 ) ) |
47 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ) |
48 |
|
fveq2 |
⊢ ( 𝑦 = 𝑏 → ( Base ‘ 𝑦 ) = ( Base ‘ 𝑏 ) ) |
49 |
|
fveq2 |
⊢ ( 𝑥 = 𝑎 → ( Base ‘ 𝑥 ) = ( Base ‘ 𝑎 ) ) |
50 |
48 49
|
oveqan12rd |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) = ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) |
51 |
50
|
reseq2d |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) = ( I ↾ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) ) |
52 |
51
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) ) → ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) = ( I ↾ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) ) |
53 |
3 34
|
eqsstrid |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑈 ) |
54 |
53
|
sseld |
⊢ ( 𝜑 → ( 𝑎 ∈ 𝐵 → 𝑎 ∈ 𝑈 ) ) |
55 |
54
|
com12 |
⊢ ( 𝑎 ∈ 𝐵 → ( 𝜑 → 𝑎 ∈ 𝑈 ) ) |
56 |
55
|
adantr |
⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝜑 → 𝑎 ∈ 𝑈 ) ) |
57 |
56
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 ∈ 𝑈 ) |
58 |
53
|
sseld |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝐵 → 𝑏 ∈ 𝑈 ) ) |
59 |
58
|
adantld |
⊢ ( 𝜑 → ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝑈 ) ) |
60 |
59
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑏 ∈ 𝑈 ) |
61 |
|
ovexd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ∈ V ) |
62 |
61
|
resiexd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( I ↾ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) ∈ V ) |
63 |
47 52 57 60 62
|
ovmpod |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) 𝑏 ) = ( I ↾ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) ) |
64 |
63
|
reseq1d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑎 ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) 𝑏 ) ↾ ( 𝑎 ( Hom ‘ 𝑅 ) 𝑏 ) ) = ( ( I ↾ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) ↾ ( 𝑎 ( Hom ‘ 𝑅 ) 𝑏 ) ) ) |
65 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑈 ∈ WUni ) |
66 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 ∈ 𝐵 ) |
67 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑏 ∈ 𝐵 ) |
68 |
1 3 65 21 66 67
|
ringchom |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( Hom ‘ 𝑅 ) 𝑏 ) = ( 𝑎 RingHom 𝑏 ) ) |
69 |
68
|
reseq2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( I ↾ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) ↾ ( 𝑎 ( Hom ‘ 𝑅 ) 𝑏 ) ) = ( ( I ↾ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) ↾ ( 𝑎 RingHom 𝑏 ) ) ) |
70 |
|
eqid |
⊢ ( Base ‘ 𝑎 ) = ( Base ‘ 𝑎 ) |
71 |
|
eqid |
⊢ ( Base ‘ 𝑏 ) = ( Base ‘ 𝑏 ) |
72 |
70 71
|
rhmf |
⊢ ( 𝑓 ∈ ( 𝑎 RingHom 𝑏 ) → 𝑓 : ( Base ‘ 𝑎 ) ⟶ ( Base ‘ 𝑏 ) ) |
73 |
|
fvex |
⊢ ( Base ‘ 𝑏 ) ∈ V |
74 |
|
fvex |
⊢ ( Base ‘ 𝑎 ) ∈ V |
75 |
73 74
|
pm3.2i |
⊢ ( ( Base ‘ 𝑏 ) ∈ V ∧ ( Base ‘ 𝑎 ) ∈ V ) |
76 |
75
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( Base ‘ 𝑏 ) ∈ V ∧ ( Base ‘ 𝑎 ) ∈ V ) ) |
77 |
|
elmapg |
⊢ ( ( ( Base ‘ 𝑏 ) ∈ V ∧ ( Base ‘ 𝑎 ) ∈ V ) → ( 𝑓 ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ↔ 𝑓 : ( Base ‘ 𝑎 ) ⟶ ( Base ‘ 𝑏 ) ) ) |
78 |
76 77
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑓 ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ↔ 𝑓 : ( Base ‘ 𝑎 ) ⟶ ( Base ‘ 𝑏 ) ) ) |
79 |
72 78
|
syl5ibr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑓 ∈ ( 𝑎 RingHom 𝑏 ) → 𝑓 ∈ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) ) |
80 |
79
|
ssrdv |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 RingHom 𝑏 ) ⊆ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) |
81 |
80
|
resabs1d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( I ↾ ( ( Base ‘ 𝑏 ) ↑m ( Base ‘ 𝑎 ) ) ) ↾ ( 𝑎 RingHom 𝑏 ) ) = ( I ↾ ( 𝑎 RingHom 𝑏 ) ) ) |
82 |
64 69 81
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( I ↾ ( 𝑎 RingHom 𝑏 ) ) = ( ( 𝑎 ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) 𝑏 ) ↾ ( 𝑎 ( Hom ‘ 𝑅 ) 𝑏 ) ) ) |
83 |
36 46 82
|
mpoeq123dva |
⊢ ( 𝜑 → ( 𝑎 ∈ 𝐵 , 𝑏 ∈ 𝐵 ↦ ( I ↾ ( 𝑎 RingHom 𝑏 ) ) ) = ( 𝑎 ∈ ( Base ‘ 𝑅 ) , 𝑏 ∈ ( Base ‘ 𝑅 ) ↦ ( ( 𝑎 ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) 𝑏 ) ↾ ( 𝑎 ( Hom ‘ 𝑅 ) 𝑏 ) ) ) ) |
84 |
6 45 83
|
3eqtrrd |
⊢ ( 𝜑 → ( 𝑎 ∈ ( Base ‘ 𝑅 ) , 𝑏 ∈ ( Base ‘ 𝑅 ) ↦ ( ( 𝑎 ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) 𝑏 ) ↾ ( 𝑎 ( Hom ‘ 𝑅 ) 𝑏 ) ) ) = 𝐺 ) |
85 |
39 84
|
opeq12d |
⊢ ( 𝜑 → 〈 ( ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) ↾ ( Base ‘ 𝑅 ) ) , ( 𝑎 ∈ ( Base ‘ 𝑅 ) , 𝑏 ∈ ( Base ‘ 𝑅 ) ↦ ( ( 𝑎 ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) 𝑏 ) ↾ ( 𝑎 ( Hom ‘ 𝑅 ) 𝑏 ) ) ) 〉 = 〈 𝐹 , 𝐺 〉 ) |
86 |
32 85
|
eqtr2d |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 = ( 〈 ( 𝑥 ∈ 𝑈 ↦ ( Base ‘ 𝑥 ) ) , ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) 〉 ↾f ( Hom ‘ 𝑅 ) ) ) |
87 |
1 4 18 22
|
ringcval |
⊢ ( 𝜑 → 𝑅 = ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) ) |
88 |
87
|
oveq1d |
⊢ ( 𝜑 → ( 𝑅 Func 𝑆 ) = ( ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝑅 ) ) Func 𝑆 ) ) |
89 |
24 86 88
|
3eltr4d |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝑅 Func 𝑆 ) ) |
90 |
|
df-br |
⊢ ( 𝐹 ( 𝑅 Func 𝑆 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝑅 Func 𝑆 ) ) |
91 |
89 90
|
sylibr |
⊢ ( 𝜑 → 𝐹 ( 𝑅 Func 𝑆 ) 𝐺 ) |