Step |
Hyp |
Ref |
Expression |
1 |
|
funcringcsetc.r |
|- R = ( RingCat ` U ) |
2 |
|
funcringcsetc.s |
|- S = ( SetCat ` U ) |
3 |
|
funcringcsetc.b |
|- B = ( Base ` R ) |
4 |
|
funcringcsetc.u |
|- ( ph -> U e. WUni ) |
5 |
|
funcringcsetc.f |
|- ( ph -> F = ( x e. B |-> ( Base ` x ) ) ) |
6 |
|
funcringcsetc.g |
|- ( ph -> G = ( x e. B , y e. B |-> ( _I |` ( x RingHom y ) ) ) ) |
7 |
|
eqid |
|- ( ExtStrCat ` U ) = ( ExtStrCat ` U ) |
8 |
|
eqid |
|- ( Base ` ( ExtStrCat ` U ) ) = ( Base ` ( ExtStrCat ` U ) ) |
9 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
10 |
7 4
|
estrcbas |
|- ( ph -> U = ( Base ` ( ExtStrCat ` U ) ) ) |
11 |
10
|
mpteq1d |
|- ( ph -> ( x e. U |-> ( Base ` x ) ) = ( x e. ( Base ` ( ExtStrCat ` U ) ) |-> ( Base ` x ) ) ) |
12 |
|
mpoeq12 |
|- ( ( U = ( Base ` ( ExtStrCat ` U ) ) /\ U = ( Base ` ( ExtStrCat ` U ) ) ) -> ( x e. U , y e. U |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) = ( x e. ( Base ` ( ExtStrCat ` U ) ) , y e. ( Base ` ( ExtStrCat ` U ) ) |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) ) |
13 |
10 10 12
|
syl2anc |
|- ( ph -> ( x e. U , y e. U |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) = ( x e. ( Base ` ( ExtStrCat ` U ) ) , y e. ( Base ` ( ExtStrCat ` U ) ) |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) ) |
14 |
7 2 8 9 4 11 13
|
funcestrcsetc |
|- ( ph -> ( x e. U |-> ( Base ` x ) ) ( ( ExtStrCat ` U ) Func S ) ( x e. U , y e. U |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) ) |
15 |
|
df-br |
|- ( ( x e. U |-> ( Base ` x ) ) ( ( ExtStrCat ` U ) Func S ) ( x e. U , y e. U |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) <-> <. ( x e. U |-> ( Base ` x ) ) , ( x e. U , y e. U |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) >. e. ( ( ExtStrCat ` U ) Func S ) ) |
16 |
14 15
|
sylib |
|- ( ph -> <. ( x e. U |-> ( Base ` x ) ) , ( x e. U , y e. U |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) >. e. ( ( ExtStrCat ` U ) Func S ) ) |
17 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
18 |
1 17 4
|
ringcbas |
|- ( ph -> ( Base ` R ) = ( U i^i Ring ) ) |
19 |
|
incom |
|- ( U i^i Ring ) = ( Ring i^i U ) |
20 |
18 19
|
eqtrdi |
|- ( ph -> ( Base ` R ) = ( Ring i^i U ) ) |
21 |
|
eqid |
|- ( Hom ` R ) = ( Hom ` R ) |
22 |
1 17 4 21
|
ringchomfval |
|- ( ph -> ( Hom ` R ) = ( RingHom |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) |
23 |
7 4 20 22
|
rhmsubcsetc |
|- ( ph -> ( Hom ` R ) e. ( Subcat ` ( ExtStrCat ` U ) ) ) |
24 |
16 23
|
funcres |
|- ( ph -> ( <. ( x e. U |-> ( Base ` x ) ) , ( x e. U , y e. U |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) >. |`f ( Hom ` R ) ) e. ( ( ( ExtStrCat ` U ) |`cat ( Hom ` R ) ) Func S ) ) |
25 |
|
mptexg |
|- ( U e. WUni -> ( x e. U |-> ( Base ` x ) ) e. _V ) |
26 |
4 25
|
syl |
|- ( ph -> ( x e. U |-> ( Base ` x ) ) e. _V ) |
27 |
|
fvex |
|- ( Hom ` R ) e. _V |
28 |
27
|
a1i |
|- ( ph -> ( Hom ` R ) e. _V ) |
29 |
|
mpoexga |
|- ( ( U e. WUni /\ U e. WUni ) -> ( x e. U , y e. U |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) e. _V ) |
30 |
4 4 29
|
syl2anc |
|- ( ph -> ( x e. U , y e. U |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) e. _V ) |
31 |
18 22
|
rhmresfn |
|- ( ph -> ( Hom ` R ) Fn ( ( Base ` R ) X. ( Base ` R ) ) ) |
32 |
26 28 30 31
|
resfval2 |
|- ( ph -> ( <. ( x e. U |-> ( Base ` x ) ) , ( x e. U , y e. U |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) >. |`f ( Hom ` R ) ) = <. ( ( x e. U |-> ( Base ` x ) ) |` ( Base ` R ) ) , ( a e. ( Base ` R ) , b e. ( Base ` R ) |-> ( ( a ( x e. U , y e. U |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) b ) |` ( a ( Hom ` R ) b ) ) ) >. ) |
33 |
|
inss1 |
|- ( U i^i Ring ) C_ U |
34 |
18 33
|
eqsstrdi |
|- ( ph -> ( Base ` R ) C_ U ) |
35 |
34
|
resmptd |
|- ( ph -> ( ( x e. U |-> ( Base ` x ) ) |` ( Base ` R ) ) = ( x e. ( Base ` R ) |-> ( Base ` x ) ) ) |
36 |
3
|
a1i |
|- ( ph -> B = ( Base ` R ) ) |
37 |
36
|
mpteq1d |
|- ( ph -> ( x e. B |-> ( Base ` x ) ) = ( x e. ( Base ` R ) |-> ( Base ` x ) ) ) |
38 |
5 37
|
eqtr2d |
|- ( ph -> ( x e. ( Base ` R ) |-> ( Base ` x ) ) = F ) |
39 |
35 38
|
eqtrd |
|- ( ph -> ( ( x e. U |-> ( Base ` x ) ) |` ( Base ` R ) ) = F ) |
40 |
|
oveq1 |
|- ( x = a -> ( x RingHom y ) = ( a RingHom y ) ) |
41 |
40
|
reseq2d |
|- ( x = a -> ( _I |` ( x RingHom y ) ) = ( _I |` ( a RingHom y ) ) ) |
42 |
|
oveq2 |
|- ( y = b -> ( a RingHom y ) = ( a RingHom b ) ) |
43 |
42
|
reseq2d |
|- ( y = b -> ( _I |` ( a RingHom y ) ) = ( _I |` ( a RingHom b ) ) ) |
44 |
41 43
|
cbvmpov |
|- ( x e. B , y e. B |-> ( _I |` ( x RingHom y ) ) ) = ( a e. B , b e. B |-> ( _I |` ( a RingHom b ) ) ) |
45 |
44
|
a1i |
|- ( ph -> ( x e. B , y e. B |-> ( _I |` ( x RingHom y ) ) ) = ( a e. B , b e. B |-> ( _I |` ( a RingHom b ) ) ) ) |
46 |
3
|
a1i |
|- ( ( ph /\ a e. B ) -> B = ( Base ` R ) ) |
47 |
|
eqidd |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( x e. U , y e. U |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) = ( x e. U , y e. U |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) ) |
48 |
|
fveq2 |
|- ( y = b -> ( Base ` y ) = ( Base ` b ) ) |
49 |
|
fveq2 |
|- ( x = a -> ( Base ` x ) = ( Base ` a ) ) |
50 |
48 49
|
oveqan12rd |
|- ( ( x = a /\ y = b ) -> ( ( Base ` y ) ^m ( Base ` x ) ) = ( ( Base ` b ) ^m ( Base ` a ) ) ) |
51 |
50
|
reseq2d |
|- ( ( x = a /\ y = b ) -> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) = ( _I |` ( ( Base ` b ) ^m ( Base ` a ) ) ) ) |
52 |
51
|
adantl |
|- ( ( ( ph /\ ( a e. B /\ b e. B ) ) /\ ( x = a /\ y = b ) ) -> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) = ( _I |` ( ( Base ` b ) ^m ( Base ` a ) ) ) ) |
53 |
3 34
|
eqsstrid |
|- ( ph -> B C_ U ) |
54 |
53
|
sseld |
|- ( ph -> ( a e. B -> a e. U ) ) |
55 |
54
|
com12 |
|- ( a e. B -> ( ph -> a e. U ) ) |
56 |
55
|
adantr |
|- ( ( a e. B /\ b e. B ) -> ( ph -> a e. U ) ) |
57 |
56
|
impcom |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> a e. U ) |
58 |
53
|
sseld |
|- ( ph -> ( b e. B -> b e. U ) ) |
59 |
58
|
adantld |
|- ( ph -> ( ( a e. B /\ b e. B ) -> b e. U ) ) |
60 |
59
|
imp |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> b e. U ) |
61 |
|
ovexd |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( Base ` b ) ^m ( Base ` a ) ) e. _V ) |
62 |
61
|
resiexd |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( _I |` ( ( Base ` b ) ^m ( Base ` a ) ) ) e. _V ) |
63 |
47 52 57 60 62
|
ovmpod |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( a ( x e. U , y e. U |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) b ) = ( _I |` ( ( Base ` b ) ^m ( Base ` a ) ) ) ) |
64 |
63
|
reseq1d |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( a ( x e. U , y e. U |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) b ) |` ( a ( Hom ` R ) b ) ) = ( ( _I |` ( ( Base ` b ) ^m ( Base ` a ) ) ) |` ( a ( Hom ` R ) b ) ) ) |
65 |
4
|
adantr |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> U e. WUni ) |
66 |
|
simprl |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> a e. B ) |
67 |
|
simprr |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> b e. B ) |
68 |
1 3 65 21 66 67
|
ringchom |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( a ( Hom ` R ) b ) = ( a RingHom b ) ) |
69 |
68
|
reseq2d |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( _I |` ( ( Base ` b ) ^m ( Base ` a ) ) ) |` ( a ( Hom ` R ) b ) ) = ( ( _I |` ( ( Base ` b ) ^m ( Base ` a ) ) ) |` ( a RingHom b ) ) ) |
70 |
|
eqid |
|- ( Base ` a ) = ( Base ` a ) |
71 |
|
eqid |
|- ( Base ` b ) = ( Base ` b ) |
72 |
70 71
|
rhmf |
|- ( f e. ( a RingHom b ) -> f : ( Base ` a ) --> ( Base ` b ) ) |
73 |
|
fvex |
|- ( Base ` b ) e. _V |
74 |
|
fvex |
|- ( Base ` a ) e. _V |
75 |
73 74
|
pm3.2i |
|- ( ( Base ` b ) e. _V /\ ( Base ` a ) e. _V ) |
76 |
75
|
a1i |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( Base ` b ) e. _V /\ ( Base ` a ) e. _V ) ) |
77 |
|
elmapg |
|- ( ( ( Base ` b ) e. _V /\ ( Base ` a ) e. _V ) -> ( f e. ( ( Base ` b ) ^m ( Base ` a ) ) <-> f : ( Base ` a ) --> ( Base ` b ) ) ) |
78 |
76 77
|
syl |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( f e. ( ( Base ` b ) ^m ( Base ` a ) ) <-> f : ( Base ` a ) --> ( Base ` b ) ) ) |
79 |
72 78
|
syl5ibr |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( f e. ( a RingHom b ) -> f e. ( ( Base ` b ) ^m ( Base ` a ) ) ) ) |
80 |
79
|
ssrdv |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( a RingHom b ) C_ ( ( Base ` b ) ^m ( Base ` a ) ) ) |
81 |
80
|
resabs1d |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( _I |` ( ( Base ` b ) ^m ( Base ` a ) ) ) |` ( a RingHom b ) ) = ( _I |` ( a RingHom b ) ) ) |
82 |
64 69 81
|
3eqtrrd |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( _I |` ( a RingHom b ) ) = ( ( a ( x e. U , y e. U |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) b ) |` ( a ( Hom ` R ) b ) ) ) |
83 |
36 46 82
|
mpoeq123dva |
|- ( ph -> ( a e. B , b e. B |-> ( _I |` ( a RingHom b ) ) ) = ( a e. ( Base ` R ) , b e. ( Base ` R ) |-> ( ( a ( x e. U , y e. U |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) b ) |` ( a ( Hom ` R ) b ) ) ) ) |
84 |
6 45 83
|
3eqtrrd |
|- ( ph -> ( a e. ( Base ` R ) , b e. ( Base ` R ) |-> ( ( a ( x e. U , y e. U |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) b ) |` ( a ( Hom ` R ) b ) ) ) = G ) |
85 |
39 84
|
opeq12d |
|- ( ph -> <. ( ( x e. U |-> ( Base ` x ) ) |` ( Base ` R ) ) , ( a e. ( Base ` R ) , b e. ( Base ` R ) |-> ( ( a ( x e. U , y e. U |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) b ) |` ( a ( Hom ` R ) b ) ) ) >. = <. F , G >. ) |
86 |
32 85
|
eqtr2d |
|- ( ph -> <. F , G >. = ( <. ( x e. U |-> ( Base ` x ) ) , ( x e. U , y e. U |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) >. |`f ( Hom ` R ) ) ) |
87 |
1 4 18 22
|
ringcval |
|- ( ph -> R = ( ( ExtStrCat ` U ) |`cat ( Hom ` R ) ) ) |
88 |
87
|
oveq1d |
|- ( ph -> ( R Func S ) = ( ( ( ExtStrCat ` U ) |`cat ( Hom ` R ) ) Func S ) ) |
89 |
24 86 88
|
3eltr4d |
|- ( ph -> <. F , G >. e. ( R Func S ) ) |
90 |
|
df-br |
|- ( F ( R Func S ) G <-> <. F , G >. e. ( R Func S ) ) |
91 |
89 90
|
sylibr |
|- ( ph -> F ( R Func S ) G ) |