| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funcringcsetcALTV2.r |
|- R = ( RingCat ` U ) |
| 2 |
|
funcringcsetcALTV2.s |
|- S = ( SetCat ` U ) |
| 3 |
|
funcringcsetcALTV2.b |
|- B = ( Base ` R ) |
| 4 |
|
funcringcsetcALTV2.c |
|- C = ( Base ` S ) |
| 5 |
|
funcringcsetcALTV2.u |
|- ( ph -> U e. WUni ) |
| 6 |
|
funcringcsetcALTV2.f |
|- ( ph -> F = ( x e. B |-> ( Base ` x ) ) ) |
| 7 |
6
|
adantr |
|- ( ( ph /\ X e. B ) -> F = ( x e. B |-> ( Base ` x ) ) ) |
| 8 |
|
fveq2 |
|- ( x = X -> ( Base ` x ) = ( Base ` X ) ) |
| 9 |
8
|
adantl |
|- ( ( ( ph /\ X e. B ) /\ x = X ) -> ( Base ` x ) = ( Base ` X ) ) |
| 10 |
|
simpr |
|- ( ( ph /\ X e. B ) -> X e. B ) |
| 11 |
|
fvexd |
|- ( ( ph /\ X e. B ) -> ( Base ` X ) e. _V ) |
| 12 |
7 9 10 11
|
fvmptd |
|- ( ( ph /\ X e. B ) -> ( F ` X ) = ( Base ` X ) ) |