Metamath Proof Explorer


Theorem funcringcsetcALTV2lem1

Description: Lemma 1 for funcringcsetcALTV2 . (Contributed by AV, 15-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses funcringcsetcALTV2.r R=RingCatU
funcringcsetcALTV2.s S=SetCatU
funcringcsetcALTV2.b B=BaseR
funcringcsetcALTV2.c C=BaseS
funcringcsetcALTV2.u φUWUni
funcringcsetcALTV2.f φF=xBBasex
Assertion funcringcsetcALTV2lem1 φXBFX=BaseX

Proof

Step Hyp Ref Expression
1 funcringcsetcALTV2.r R=RingCatU
2 funcringcsetcALTV2.s S=SetCatU
3 funcringcsetcALTV2.b B=BaseR
4 funcringcsetcALTV2.c C=BaseS
5 funcringcsetcALTV2.u φUWUni
6 funcringcsetcALTV2.f φF=xBBasex
7 6 adantr φXBF=xBBasex
8 fveq2 x=XBasex=BaseX
9 8 adantl φXBx=XBasex=BaseX
10 simpr φXBXB
11 fvexd φXBBaseXV
12 7 9 10 11 fvmptd φXBFX=BaseX