Metamath Proof Explorer


Theorem funcringcsetcALTV2lem2

Description: Lemma 2 for funcringcsetcALTV2 . (Contributed by AV, 15-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses funcringcsetcALTV2.r R=RingCatU
funcringcsetcALTV2.s S=SetCatU
funcringcsetcALTV2.b B=BaseR
funcringcsetcALTV2.c C=BaseS
funcringcsetcALTV2.u φUWUni
funcringcsetcALTV2.f φF=xBBasex
Assertion funcringcsetcALTV2lem2 φXBFXU

Proof

Step Hyp Ref Expression
1 funcringcsetcALTV2.r R=RingCatU
2 funcringcsetcALTV2.s S=SetCatU
3 funcringcsetcALTV2.b B=BaseR
4 funcringcsetcALTV2.c C=BaseS
5 funcringcsetcALTV2.u φUWUni
6 funcringcsetcALTV2.f φF=xBBasex
7 1 2 3 4 5 6 funcringcsetcALTV2lem1 φXBFX=BaseX
8 1 3 5 ringcbasbas φXBBaseXU
9 7 8 eqeltrd φXBFXU