Metamath Proof Explorer


Theorem ringcbasbas

Description: An element of the base set of the base set of the category of unital rings (i.e. the base set of a ring) belongs to the considered weak universe. (Contributed by AV, 15-Feb-2020)

Ref Expression
Hypotheses ringcbasbas.r C = RingCat U
ringcbasbas.b B = Base C
ringcbasbas.u φ U WUni
Assertion ringcbasbas φ R B Base R U

Proof

Step Hyp Ref Expression
1 ringcbasbas.r C = RingCat U
2 ringcbasbas.b B = Base C
3 ringcbasbas.u φ U WUni
4 1 2 3 ringcbas φ B = U Ring
5 4 eleq2d φ R B R U Ring
6 elin R U Ring R U R Ring
7 baseid Base = Slot Base ndx
8 simpl U WUni R U U WUni
9 simpr U WUni R U R U
10 7 8 9 wunstr U WUni R U Base R U
11 10 ex U WUni R U Base R U
12 11 3 syl11 R U φ Base R U
13 12 adantr R U R Ring φ Base R U
14 6 13 sylbi R U Ring φ Base R U
15 14 com12 φ R U Ring Base R U
16 5 15 sylbid φ R B Base R U
17 16 imp φ R B Base R U