Metamath Proof Explorer


Theorem ringcbasbas

Description: An element of the base set of the base set of the category of unital rings (i.e. the base set of a ring) belongs to the considered weak universe. (Contributed by AV, 15-Feb-2020)

Ref Expression
Hypotheses ringcbasbas.r
|- C = ( RingCat ` U )
ringcbasbas.b
|- B = ( Base ` C )
ringcbasbas.u
|- ( ph -> U e. WUni )
Assertion ringcbasbas
|- ( ( ph /\ R e. B ) -> ( Base ` R ) e. U )

Proof

Step Hyp Ref Expression
1 ringcbasbas.r
 |-  C = ( RingCat ` U )
2 ringcbasbas.b
 |-  B = ( Base ` C )
3 ringcbasbas.u
 |-  ( ph -> U e. WUni )
4 1 2 3 ringcbas
 |-  ( ph -> B = ( U i^i Ring ) )
5 4 eleq2d
 |-  ( ph -> ( R e. B <-> R e. ( U i^i Ring ) ) )
6 elin
 |-  ( R e. ( U i^i Ring ) <-> ( R e. U /\ R e. Ring ) )
7 baseid
 |-  Base = Slot ( Base ` ndx )
8 simpl
 |-  ( ( U e. WUni /\ R e. U ) -> U e. WUni )
9 simpr
 |-  ( ( U e. WUni /\ R e. U ) -> R e. U )
10 7 8 9 wunstr
 |-  ( ( U e. WUni /\ R e. U ) -> ( Base ` R ) e. U )
11 10 ex
 |-  ( U e. WUni -> ( R e. U -> ( Base ` R ) e. U ) )
12 11 3 syl11
 |-  ( R e. U -> ( ph -> ( Base ` R ) e. U ) )
13 12 adantr
 |-  ( ( R e. U /\ R e. Ring ) -> ( ph -> ( Base ` R ) e. U ) )
14 6 13 sylbi
 |-  ( R e. ( U i^i Ring ) -> ( ph -> ( Base ` R ) e. U ) )
15 14 com12
 |-  ( ph -> ( R e. ( U i^i Ring ) -> ( Base ` R ) e. U ) )
16 5 15 sylbid
 |-  ( ph -> ( R e. B -> ( Base ` R ) e. U ) )
17 16 imp
 |-  ( ( ph /\ R e. B ) -> ( Base ` R ) e. U )